

photoLab S(

Operating Instructions

- Part 1: General Information
- Part 2: Functional Description

Contents

1	Pho	otometers	2
	1.1	Photometry	2
	1.2	The Photometers	3
2	Pho	otometric Test Kits	3
	2.1	Basic Principle	3
		2.1.1 Spectroquant [®] Cell Tests	4
		2.1.2 Spectroquant [®] Reagent Tests	4
	2.2	Notes for Practical Use	5
		2.2.1 Measuring Range	5
		2.2.2 Influence of pH	7
		2.2.3 Influence of Temperature	7
		2.2.4 Time Stability	7
		2.2.5 Influence of Foreign Substances	8
		2.2.6 Dosing of Reagents	8
		2.2.7 Shelf-life of the Reagents	9
3	Sar	nple Preparation	9
	3.1	Taking Samples	9
	3.2	Preliminary Tests	10
	3.3	Dilution	10
	3.4	Filtration	11
	3.5	Homogenization	12
	3.6	Decomposition	12
4	Pip	etting System	14
5	Ana	alytical Quality Assurance (AQA)	15
	5.1	Quality Control at the Manufacturer	15
	5.2	Quality Control for the User	16
		5.2.1 Checking the Photometer	17
		5.2.2 Checking the Overall System	17
		5.2.3 Checking the Pipettes	18
		5.2.4 Checking Thermoreactors	18
		5.2.5 Testing for Handling Errors	19
	5.3	Determination of Sample Influences	19
	5.4	Definition of Errors	20

Photometers 1

1.1 Photometry

When a beam of light is transmitted through a coloured solution, then this beam loses its intensity, in other words a part of the light is absorbed by the solution. Depending on the substance in question, this absorption occurs at specific wavelengths.

Monochromators (e.g. narrow-band interference filters, lattices) are used to select the wavelength from the total spectrum of a tungsten-halogen lamp (VIS spectrum), a deuterium lamp (UV spectrum) or, respectively, a xenon lamp.

The intensity of the absorption can be characterized using the trans-mittance T (or, respectively, T in percent).

$$\mathbf{T} = \mathbf{I}/\mathbf{I}_{0}$$

 I_0 = Initial intensity of the light I = Intensity of the transmitted light

If the light is not absorbed at all by a solution, then this solution has a transmittance of 100 %; a complete absorption of the light in the solution means 0 % transmittance.

The measure generally used for the absorption of light is the absorbance (A), since this correlates directly with the concentration of the absorbing substance. The following connection exists between absorbance and transmittance:

$$A = -\log T$$

Experiments by BOUGUER (1698-1758) and LAMBERT (1728-1777) showed that the absorbance is dependent on the thickness of the absorbing layer of the cell used. The relationship between the absorbance and the concentration of the analyte in question was discovered by BEER (1825-1863). The combination of these two natural laws led to the derivation of Lambert-Beer's law, which can be described in the form of the following equation:

$$\mathbf{A} = \mathbf{E}_{\lambda} \cdot \mathbf{c} \cdot \mathbf{d}$$

 $\mathcal{E}_{\lambda} = \text{Molar absorptivity, in I/molxcm}$

 \mathbf{d} = Path length of the cell, in cm

 \mathbf{c} = Concentration of the analyte, in mol/l

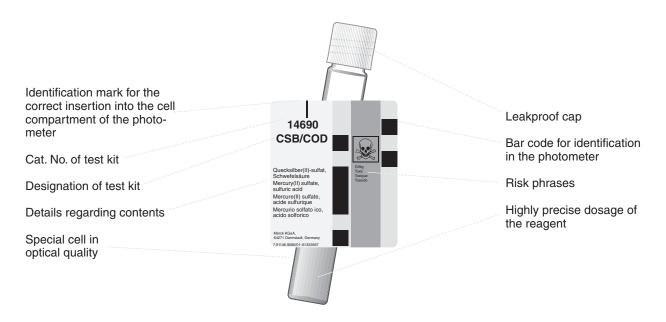
1 Photometers

1.2 The Photometers

The photometers that belong to the Spectroquant[®] Analysis System differ from conventional photometers in the following important aspects:

- The calibration functions of all test kits are electronically stored.
- The measurement value can be immediately read off from the display in the desired form.
- The method for the test kits (Cell Tests and reagent tests) belonging to the Spectroquant[®] analysis system is automatically selected via the scanning of the bar code.
- All cells formats used are automatically identified and the correct measuring range is selected automatically.
- Instrument-supported AQA ensures that measurement results can be used as secure, reproducible, and recognized analytical results.
- New methods can be downloaded from the internet site http://photometry.merck.de and permanently stored in the instrument.

For technical data and instructions for use please refer to the section "Function description" or can also be found on the internet.


2 Photometric Test Kits

2.1 Basic Principle

By means of reagents, the component of a sample to be analyzed is converted into a coloured compound in a specific reaction. The reagents or reagent mixtures contain – in addition to the reagent selective for a parameter to be determined – a number of auxiliary substances that are essential for the course of the reaction. These include, for example, buffers for adjusting the pH to the optimal value for the reaction, and masking agents that suppress or minimize the influence of interfering ions.

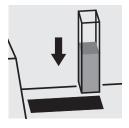
The colour reactions are in most cases based on standardized analytical methods specifically optimized in terms of ease of use, a low working effort, and shorter reaction times. Furthermore, methods cited in the literature or developed by ourselves are also used. Details on the respective reference procedures are stated in the package insert or else in the parameter overview.

2.1.1 Spectroquant® Cell Tests

Additional reagent(s)

Certain cell tests, e.g. COD or nitrite, already contain all necessary reagents in the cells, and the sample must merely be added with a pipette. In other tests, however for reasons of chemical compatibility it is necessary to separate the test into two or three different reagent mixtures. In such cases, besides the sample a metered reagent must also be added.


2.1.2 Spectroquant® Reagent Tests

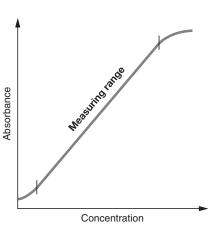

The principle behind the reagent tests is that the reagents necessary for the colour reaction are combined in the form of liquid concentrates or solid-substance mixtures. A few drops of the reagent concentrate are added to the sample. This means that there is no need to dilute the sample, which in turn enhances the sensitivity of the detection. The procedure generally used in classical photometry by which the sample is made up to a defined volume in a volumetric flask is dispensed with.

The method is selected automatically by means of the scanning of the bar code by the AutoSelector.

All cells formats used are automatically identified and the correct measuring range is selected automatically.

Subsequently the result is automatically shown on the display.

2.2 Notes for Practicle Use


2.2.1 Measuring range

The intensity of the colour of a solution, measured as the absorbance, is proportional to the concentration of the respective analyte only within a specific range. This measuring range (effective range) is electronically stored in the photometers for each individual test kit .

Below the specified measuring range, either a different cell or else another procedure must be used. The **lower limit of the measuring range** either takes the form of nonlinearity of the calibration curve, as shown in the figure, or else is given by the method detection limit. The **method detec-tion limit** of an analytical method is the lowest concentration of the analyte in question that can be measured quantitatively with a defined degree of probability (e.g. 99 %).

The **upper limit of the measuring range** is the point at which the linear correlation between the concentration and the absorbance ends. In such a case the sample must be diluted accordingly so that it lies ideally in the middle of the effective range (least-error measurement).

In photometry it is conventional practice to measure against the reagent blank value. Here the analysis is carried out "blind", i.e. without any analyte added. Instead of the sample volume, the corresponding quantity of distilled or DI water is used. This **reagent blank value is prestored** in the photometers belonging to the Spectroquant[®] analysis system, which means that - due to the high batch reproducibility - it is possible to dispense with a separate measurement of the reagent blank. At the lower limit of the measuring range, the accuracy of the determination can be enhanced by performing the measurement against a separately prepared reagent blank.

In some cases the intensity of the colour of the solution and thus the absorbance can drop again when **very high concentrations of the analyte** are present. The examples are listed in the following table. The values indicated in the display are correct up to the concentrations specified in the third column, and false measuring values are obtained above these concentrations. In such a case it is necessary to conduct a plausibility check by running preliminary tests using test strips or dilution.

Cat. No.	Method	Correct indi- cation of result up to sample conc.	Farbänderung
14739	Ammonium CT	100 mg/l	turquoise instead of green
14558	Ammonium CT	500 mg/l	turquoise instead of green
14544	Ammonium CT	1000 mg/l	turquoise instead of green
14559	Ammonium CT	5000 mg/l	turquoise instead of green
14752	Ammonium Test	100 mg/l	turquoise instead of green
00683	Ammonium Test	2500 mg/l	turquoise instead of green
00605	Bromine Test	50 mg/l	yellow instead of red
00595	Chlorine CT	25 mg/l	yellow instead of red
00597	Chlorine CT	25 mg/l	yellow instead of red
00598	Chlorine Test	25 mg/l	yellow instead of red
00602	Chlorine Test	25 mg/l	yellow instead of red
00599	Chlorine Test	25 mg/l	yellow instead of red
00086/ 87/88	Chlorine Test	300 mg/l	yellow instead of red
00608	Chlorine Dioxide Test	15 mg/l	yellow instead of red
14553	Copper CT	50 mg/l	turquoise instead of blue
14767	Copper Test	50 mg/l	turquoise instead of blue
14557	Fluoride CT	5 mg/l	brown instead of violet
14598	Fluoride Test	5 (50) mg/l	brown instead of violet
00606	Iodine Test	50 mg/l	yellow instead of red
01632	Monochloramine Test	300 mg/l	turquoise instead of green
00607	Ozone Test	15 mg/l	yellow instead of red
14551	Phenol CT	100 mg/l	weakening of colour
14831	Silver Test	5 mg/l	no change (flocculation)

2.2.2 Influence of pH

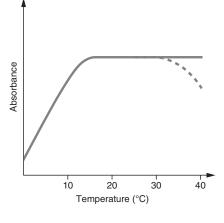
Chemical reactions follow an optimal course only within a certain pH range. The reagents contained in the test kits produce an adequate buffering of the sample solutions and ensure that the pH optimal for the reaction in question is obtained.

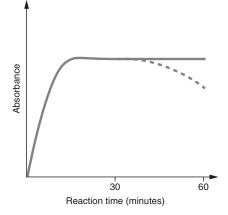
Strongly acidic (pH < 2) and strongly alkaline (pH > 12) sample solutions can prevent the pH from being adjusted to an optimal range, since under certain circumstances the buffering capacity of the test-kit reagents may not be sufficient. Any necessary correction is made by the dropwise addition of diluted acid (reduces the pH) or diluted lye (raises the pH), testing the pH with suitable indicator strips after each drop is added. The addition of the acid or lye results in a dilution of the test solution. When up to five drops are added to 10 ml of sample, the change in the volume can be neglected, since the resultant error is lower than 2 %. The addition of larger quantities should be duly considered by adjusting the sample volume accordingly.

The specified pH values for the sample solution and, wherever applicable, for the measurement solution are defined in the respective package inserts and in the analysis instructions in chapter 3 of the manual.

2.2.3 Influence of Temperature

The temperature of the sample solution and the reagents may have an effect on the colour reaction and thus on the measurement result. The typical temperature course is illustrated in the figure.


If the sample temperature is lower than 15 °C, false-low results must be reckoned with. Temperatures exceeding 30°C generally influence the stability of the compound that is formed in the reaction. The optimal temperature for the colour reaction is stated in the package inserts of the respective Spectroquant[®] test kits.


Attention! After thermic decomposition procedures, the determination of COD or total contents of nitrogen, phosphorus, or metal, a sufficient waiting time must be allowed for to permit the solution cool to room temperature.

2.2.4 Time Stability

Most of the colour reactions require a certain time to reach the maximum colour intensity. The solid curve in the figure at the right gives a schematic impression of a typical time course. The behaviour of relatively instable colour reactions with time is shown by the dotted curve.

The reaction time specified in the working instructions refers to the period of time from the addition of the last reagent until the actual measurement. In addition, the package inserts for the individual test kits also state the time interval in which the measurement value does not change. The maximum time interval is 60 minutes; this time should not be exceeded, even in the case of stable colour reactions.

2.2.5 Influence of Foreign Substances

Foreign substances in the sample solution can

- raise the measurement value as a result of an amplification of the reaction
- ower the measurement value as a result of a prevention of the reaction.

A quantification of this effects is stated in tabular form in the respective package inserts for the most important foreign ions. The tolerance limits have been determined for the individual ions; they may not be evaluated cumulatively.

Suitability for use in seawater

A tabular survey (see appendix 1) provides information on the suitability of the tests in connection with seawater and also on the tolerances for salt concentrations.

2.2.6 Dosing the Reagents

Small amounts of liquids are dosed by counting the number of drops from a leakproof bottle.

When using dropper bottles it is extremely important that the bottle be held vertically and that the drops be added slowly (approx. 1 drop per second). If this is not observed, the correct drop size and thus the correct amount of reagent are not achieved.

A positive-displacement pipette should be used for larger quantities of liquid or for the exact dosage of smaller reagent quantities. In these cases the reagent bottles are not fitted with a dropper insert.

Solid substances are dosed either with the dose-metering cap or with microspoons that are integrated into the screw cap of the respective reagent bottle. The dose-metering cap is used for solid reagents or reagent mixtures that are free-flowing.

In all other cases the substances are dosed with the microspoon.

In this case it is necessary to add only level microspoonfuls. To this end the spoon must be drawn over the brim of the reagent bottle.

At the first use replace the black screw cap of the reagent bottle by the dose-metering cap.

Hold the reagent bottle vertically and, at each dosage, press the slide all the way into the dose-metering cap. Before each dosage ensure that the slide is completely retracted.

Reclose the reagent bottle with the black screw cap at the end of the measurement series, since the function of the reagent is impaired by the absorption of atmospheric moisture.

2.2.7 Shelf-life of the Reagents

The Spectroquant[®] test kits are in most cases stable for 3 years when stored in a cool, dry place. A few test kits have a lower shelf-life of 18 or 24 months or must else be stored in a refrigerator.

COD Cell Tests must be stored protected from light.

The expiry date of the package unit is printed on the outer label. The shelflife may become reduced when the reagent bottles are not reclosed tightly after use or when the test kit is stored at temperatures higher than those specified.

3 Sample Preparation

Sample preparation covers all the steps necessary before the actual analysis can be performed.

3.1 Taking Samples

The taking of samples is the first and **most important step** on the way to obtaining the correct analysis result. Not even the most exact method of analysis can correct any mistakes made in the taking of the sample. The objective of the sampling procedure is to gain a sample with a representative composition. The most important precondition for **gaining a representative sample** is the identification of the suitable sampling site. Here it must be borne in mind that the solution to be investigated can display varying concentrations in different places at different times.

In sampling, a distinction is made between manual and automatic methods. In many cases a true picture of the average composition of the sample can be obtained only once several individual samples have been collected; this can be done manually or with an automatic sampler.

Clean plastic containers with a volume of 500 or 1000 ml are suitable for collecting samples. They should be rinsed several times, under vigorously shaken, with the water to be investigated, and then filled free of air bubbles and immediately closed tightly. The containers must be protected against the effects of air and heat and then be forwarded for the further analytical steps as soon as possible. In exceptional cases, preservation measures in the form of short-term refrigeration at +2 to +5 °C and chemical conservation can be taken.

Parameter	Preservation		
COD	+2 to +5 °C max. 24 h or		
	–18 °C max. 14 days		
N compounds:	analyze immediately, only in exceptional case		
NH ₄ -N, NO ₃ -N, NO ₂ -N	+2 to +5 °C max. 6 h		
P compounds:	short-term storage, no preservation;		
PO_4 -P, P total	with nitric acid to pH 1, max. 4 weeks		
Heavy metals	short-term storage, no preservation;		
	with nitric acid to pH 1, max. 4 weeks		

3.2 Preliminary Tests

Correct measurement results can be obtained only within the measuring range specified for each individual parameter. When dealing with sample solutions of an unknown concentration, it is advisable to establish whether the sample concentration is indeed within the specified measuring range, ideally roughly in the middle of the range.

Preliminary tests enhance the analytical reliability and make the determination of the necessary dilution ratios in the case of high concentrations easier. **Merckoquant®Test Strips** are very well suited for preliminary tests.

3.3 Dilution

Dilution of samples is necessary for two reasons:

- The concentration of the parameter under investigation is too high, i.e. it lies outside the measuring range.
- Other substances contained in the sample interfere with the determination (matrix interference); false-high or false-low results may ensue.

The following auxiliaries are absolute prerequisites for the dilution of the sample:

- Volumetric flasks of varying sizes (e.g. 50, 100 and 200 ml)
- Positive-displacement pipette
- Distilled or DI water.

Only dilutions carried out with these auxiliary products are of sufficient reliability in the area of trace analysis, to which photometry belongs (for the simplified procedure see page 11).

An important aspect here is that once the volumetric flask has been filled up to the mark with distilled water the flask is closed and the contents are thoroughly mixed.

The **dilution factor** (D_F) resulting from the dilution procedure is calculated as follows:

D_F = Final volume (total volume) Initial volume (sample volume)

The analytical result is subsequently multiplied by the dilution factor.

A calculation can be dispensed with when the dilution is programmed into the photometer. The **dilution number** (see the table on page 11) is entered and the measurement value is subsequently calculated correctly and immediately displayed.

All dilutions should be made in such a way that the measurement value lies in the middle of the measuring range. As a rule, the dilution factor should never be higher than 100. In the event that yet higher dilutions become necessary all the same, then this must be done in two separate steps.

Example

Step 1:	Make up 2 ml of sample to 200 ml with distilled water;
	$D_F = 100$, dilution number 1+99

Step 2: Take 5 ml of the above solution and make up to 100 ml; $D_r = 20$, dilution number 1+19

The dilution factor for the total dilution is calculated by multiplying the individual dilutions:

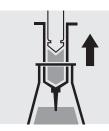
D_{Etotal} = D_{E1} x D_{E2} = 100 x 20 = 2000, dilution number 1+1999

Simplified procedure

Dilutions up to 1:10 can also be prepared without volumetric flasks in a glass beaker, measuring the volumes of the sample and the dilution water using a previously calibrated positive-displacement pipette (see table for instructions).

Desired dilution	Volume of sample [ml]	Volume of dist. water [ml]	Dilution factor	Dilution number
1:2	5	5	2	1+1
1:3	5	10	3	1+2
1:4	2	6	4	1+3
1:5	2	8	5	1+4
1:10	1	9	10	1+9

3.4 Filtration


Strongly turbid samples require pretreatment before they can determined in a photometer, since the effect of turbidity can result in considerable variations in the measurement values and in false-high readings. Care must be taken here to ensure that the substance to be determined is not contained in the suspended material, in which case a sample decomposition must be carried out.

Compounds that always occur in dissolved form (for example ammonium, nitrate, nitrite, chlorine, chloride, cyanide, fluoride, orthophosphate, and sulfate) permit a previous filtration, even when the sample solution is strongly turbid.

Weak turbidity is eliminated by the **automatic turbidity-correction** feature built into the photometer (see Function description, "Device set-up/ Correction function"); in such cases it is not necessary to filter the sample before analysis.

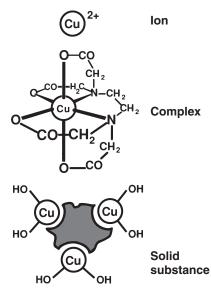
As a measure to distinguish between dissolved and undissolved waterborne substances, the water sample can be filtered through a simple paper filter. Following the recommendations stated in the reference methods, membrane filters with a pore size of 0.45 μ m are required for fine filtration.

Procedure for microfiltration


Draw out the liquid to be filtered with the syringe.

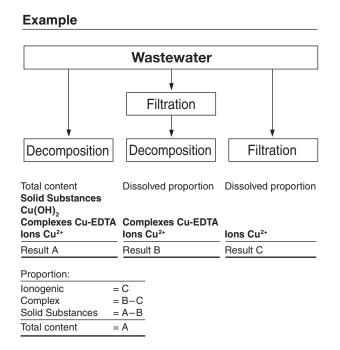
Screw the syringe tightly into the front side of the membrane-filter attachment.

Hold the syringe upright and slowly depress the piston upwards until the membrane- filter is fully wetted free of air bubbles.



Filter the contents of the syringe into the intended glass vessel.

3.5 Homogenization


As a measure to ensure that a representative sample can be taken in the presence of suspended matter in the water sample in question, for certain parameters - e.g. COD and the total content of heavy metals - the sample must be homogenized. This must be carried out using a high-speed blender (2 minutes at 5000 – 20 000 rpm and taking the sample while stirring.

3.6 Decomposition

Water-borne substances can be present in the sample for investigation in a variety of forms: as the ion, bound more or less solidly in a complex, or as a solid substance.

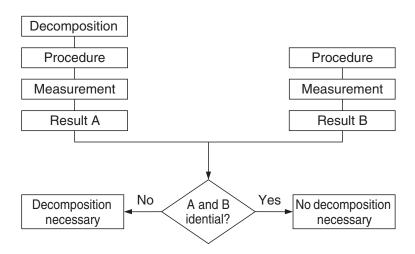
The manner in which the sample is pretreated enables the three proportions to be distinguished from each other. This can be illustrated using a copper-containing wastewater sample as an example.

Decomposition converts the substance to be determined into an analyzable form. In most cases, decomposition agents take the form of acids in combination with oxidizing agents; in exceptional cases (e.g. in the determination of total nitrogen) an alkaline decomposition is more effective. The type of decomposition procedure used depends on the analyte to be determined and the sample matrix.

The ready-to-use sample-decomposition products **Spectroquant[®] Crack Set** 10 and 20 are suited for the preparation of the sample materials for the determinations stated in the table.

The decomposition processes are carried out in the **Spectroquant**[®] **thermoreactor** (capacity: 12 or 24 decomposition cells) at 120 °C or, respectively, 100 °C. Details regarding the heating times and further treatment can be

found in the package inserts contained in the **Spectroquant® Crack Set** packs.


Determination of	Sample preparation with
Total phosphorus*	Crack Set 10 / 10 C**
Total chromium* [= sum of chromate and chromium(III)]	Crack Set 10 / 10 C
Total metal [= sum of free and complex-bound metal]	Crack Set 10 / 10 C
Total nitrogen*	Crack Set 20

* The decomposition reagents are already contained in the packs of the respective cell tests.

** Decomposition cells are included in the pack; empty cells are required for the decomposition for Crack Sets 10 and 20.

In the event that the sample to be analyzed is a highly contaminated material (high proportion of organic substances) or water-insoluble samples, decomposition using concentrated acids and other agents is indispensible. Corresponding examples from the **collection of applications** for real samples are available on request.

The necessity for decomposition can be checked according to the following diagram:

For wastewater with a consistent composition, this check as a rule need be carried out only once. It is, however, advisable to check the result periodically.

4 Pipetting System

Positive-displacement pipettes permit

- an exact dosage of the sample volume
- a precise measurement of sample and reagent volumes and of the volumes of water for dilution purposes.

Pipettes of varying volumes and also ones with a fixed volume are available.

Sources of error and hints on how to avoid them:

- Closely follow the instructions for use contained with the pipette in question.
- Check the pipetted volumes
 - a) by weighing using analytical scales (weighing accuracy ± 1 mg), 1 ml of water at 20 °C = 1.000 g ± 1 mg
 - b) using Spectroquant[®] PipeCheck; this is a photometric check of the pipette, and scales are not necessary (see section "AQA").
- Avoidance of spread effects by rinsing the pipette several times with the solution to be pipetted.
- Always exchange the pipette tip.
- Draw up the liquid slowly and depress piston completely to discharge the liquid.

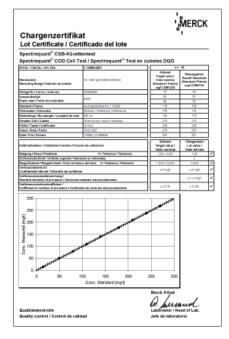
The objective of analysis must always be to determine the true content of the analyte in question as accurately and precisely as possible.

Analytical Quality Assurance represents a suitable and indispensible method by which the quality of the user's own work can be assessed, errors in the measurement system diagnosed, and the comparability with the results obtained using the respective reference methods demonstrated.

Details regarding the necessity of AQA can be found in the in Memorandum A 704 of the German Association for the Water Sector, Wastewater, and Waste Materials (Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e.V., DWA) and in the corresponding self-control/self-monitoring regulations of the German federal states (available in english).

Causes for errors can include:


- the working materials used
- the handling
- the sample under investigation.


These errors have effects on both the accuracy and precision of the results obtained.

5.1 Quality Control at the Manufacturer

Photometers and photometric test kits possess specifications that are adhered to and above all else also documented by the manufacturer.

The **certificate for the photometer** enclosed with each device documents the quality of the measuring device.

The **certificate for the test kit**, available for each lot produced, documents the quality of the reagents contained in the test kit.

Calibration function:

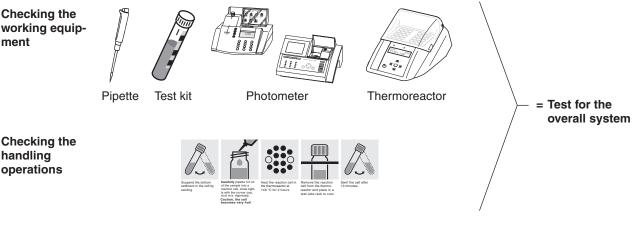
The calculated function must agree, within specified tolerances, with the function electronically stored in the photometer.

Confidence interval:

Maximum deviation from the desired value over the entire measuring range; every measurement value can be affected by this deviation; this parameter is a measure for the accuracy.

Standard deviation for the procedure:

Measurement for the dispersion of the measurement values over the entire measuring range, expressed in $\pm mg/l$.


Coefficient of variation for the procedure:

Measurement for the dispersion of the measurement values over the entire measuring range, expressed in %. The smaller the standard deviation/ coefficient of variation for the procedure, the more pronounced the linearity of the calibration curve.

5.2 Quality Control for the User

A complete check comprises the entire system, i. e. the working equipment and the mode of operation. The photometer offers an optimum degree of support in this regard, in the form of the different quality mode. The instrument, or the whole system (including reagents and all accessories) will be checked, depending on which quality mode selected. All of checking operations can thus be supported by the photometer and the check values accordingly documented as per GLP (Good Laboratory Practice) recommendations (see Function description, "Analytical Quality Assurance").

The following diagram provides an overview regarding internal qualityassurance aspects:

Influence of the sample

Test for recovery

5.2.1 Checking the Photometer

As soon as the photometer is activated it is running a Self-Check. This means the hardware and the software of the photometer is checked and compared with internal standards.

As soon as the photometer is activated it is running a Self-Check. This means the hardware and the software of the photometer is checked and compared with internal standards.

The photometer itself is checked in the **AQA 1 mode** with the **Spectroquant**[®] **PhotoCheck**: the pack includes round cells containing stable test solutions (**secondary standards**) for checking the photometer at the 445, 525, and 690 nm wavelengths. The test solutions are measured in a **reference photometer** monitored with **primary standards**, and the certificate stating the absorbance values is enclosed with the package unit. These desired values with the permissible tolerances are entered into the photometer or else handwritten into the control chart. For the measurement the cell is placed in the compartment for the round cell and identified by the photo-meter via the bar code, and the measured absorbance is compared with the desired value. The absorbance is shown on the display and can be entered into the corresponding control chart.

The measurement of four cells for a given wavelength tests – in addition to the wavelength accuracy – also the linearity of the absorbance over the effective range.

The verification of the instrument, as it is required by DIN/ISO 9000 or GLP, can be easily performed by using the Spectroquant[®] PhotoCheck. The PhotoCheck hence offering the possibility to check the instrument. All of the corressponding documentation, required by these certification guide-lines, is done by the photometer automatically.

5.2.2 Checking the Overall System

Test for the overall system includes checking the working equipment and checking the handling operations.

The **overall system** can be checked using standard solutions of a known content, preferably with the Spectroquant[®] CombiCheck; this corresponds with the **AQA 2 mode** in the photometer.

Spectroquant® CombiCheck are ready-to-use standard solutions that in terms of the analyte concentration are finely adjusted to the individual test kits. They contain a mixture of several analytes that do not interfere with each other. The standard solution (R-1) is used in the same way as a sample. A double determination is recommended as a measure to diagnose any random errors.

The desired values with the permissible tolerances are already electronically stored with the method in the photometer.

In addition to the CombiCheck, it is also possible to use **CertiPUR® standard solutions** for this checking procedure. These contain 1000 mg of the respective analyte per liter of solution.

They can be diluted to different final concentrations, which should preferably lie approximately in the middle of the measuring range of the respective test kit. The table presented in Appendix 2 provides an overview of the available CombiCheck and ready-to-use standard solutions.

Due to limited shelf-life characteristics, there are no CombiCheck or ready-to-use standard solutions for certain parameters. Appendix 3 is a compilation of **standard working procedures** necessary to make your own solutions of a defined concentration. This allows the control of parameters where there are no simple to prepare solutions available.

If the test for the overall system shows that all requirements are fulfilled, the individual results are flagged as AQA2. If not, an error message is given and the individual components of the instrument have to be checked in detail.

5.2.3 Checking the Pipettes

The **Spectroquant® PipeCheck** is used to check the pipettes. The pack contains cells filled with colour-dye concentrates. After the addition of a predefined volume of water using the pipette in question, the cell is measured against a corresponding reference cell also contained in the pack. The difference in the absorbance values of the measurement cell and reference cell may not exceed the tolerances given in the package insert. If the tolerances are exceeded, the instructions given in the section "Pipetting system" must be followed accordingly.

5.2.4 Checking Thermoreactors

This is checked by means of the thermosensor. The thermoreactor is preheated as described in the Instructions for use. When the control lamp goes out, the temperature is measured in any one of the bores of the thermoreactor. The following desired temperatures must be achieved:

Block temperature 100 °C = desired temperature 100 \pm 3 °C Block temperature 120 °C = desired temperature 120 \pm 3 °C Block temperature 148 °C = desired temperature 148 \pm 3 °C

The even distribution of the temperature over all bores can also be documented using the thermosensor.

5.2.5 Testing for Handling Errors

The user's own mode of operation must also be subjected to an exact analysis.

The following questions may serve as a guide in this regard:

- Is the test kit optimal for the measurement assignment in question?
- Is the test kit's measuring range suitable?
- Were the operating instructions for the test followed?
- Was the sample volume correct?
- Was the pipette handled properly?
- Was a new pipette tip used?
- Is the pH of the sample and measurement solution correct?
- Was the reaction time adhered to?
- Does the sample and reagent temperature lie within the correct range?
- Is the cell clean and free from scratches?
- Has the expiry date for the test kit been exceeded?

5.3 Determination of Sample Influences (matrix effects)

The influence of other substances contained in the sample may, under certain circumstances, be so great that their recovery rates lie in the region of several percent. It is recommended to check for any influence by using the addition solution contained in the Spectroquant[®] CombiCheck pack.

A defined quantity of the **addition solution** (R-2), which contains a known concentration of the respective analyte, is added to the sample and the recovery rate is determined. The following difference is then calculated:

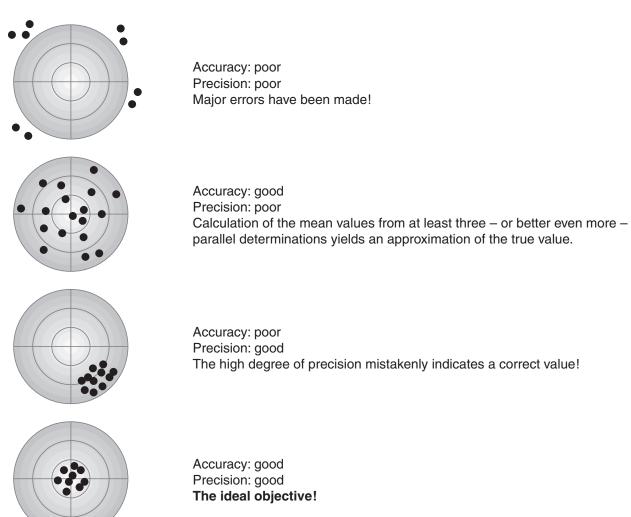
Result (sample + addition solution) – Result (sample)

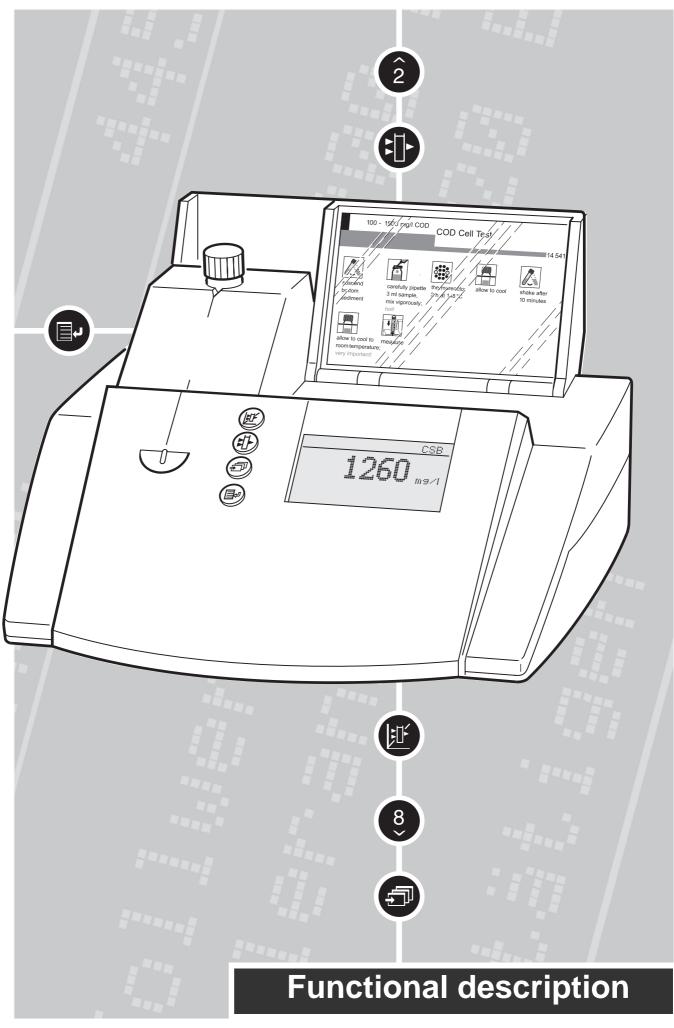
If the calculated difference is equal to the concentration of analyte of addition solution that was added, the recovery rate is 100 %. If the difference is less than 90 %, then a matrix interference is present.

5.4 Definition of Errors

It is obvious that measurement results as a rule may be associated with errors. This applies equally to standardized methods of analysis (reference methods) and to routine analysis. The discovery and the minimization of errors must be the objective here.

A distinction is made between systematic errors and random errors.


Systematic errors are present when all the results of an analysis deviate from the true value with the same algebraic sign. Examples here include: a wrong sample volume, a wrong pH, a wrong reaction time, a sample-matrix influence, etc. Systematic errors thus affect the **accuracy** of the method of analysis.


Accuracy = Deviation of the measured concentration from the true concentration

Random errors manifest themselves in the form of a wide range of deviation of the results of a given sample. These can be kept to a minimum by ensuring good operating techniques and multiple determination with calculation of the mean values. Random errors make the result of the analysis unreliable; they influence the **precision**.

Precision = Dispersion of the results among each other

The following diagram illustrates the aspects of accuracy and precision:

Edition 03/2004 · Order no. BA41107d05

General instructions

Notes on this operating manual

To ensure that you become rapidly acquainted with your photometer, the first chapter contains an overview and a short manual of the meter. The second chapter contains notes for the safe operation of the photometer.

Chapter 3 describes the commissioning of the photometer. The remaining chapters provide a comprehensive description of the functions and technical data of the photometer.

Symbols used

indicates notes that you must read – for your own safety, the safety of others and to protect your meter from being damaged.

i

indicates notes that draw your attention to special features.

Scope of delivery

- Photometer
- Power pack
- AQA MemoChip
- Product documentation

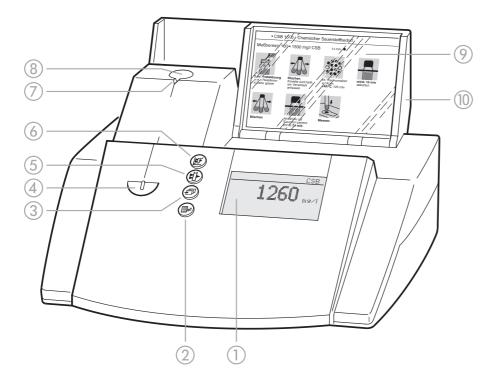
Warranty

The designated meter is covered by a warranty of 2 years from the date of purchase. The meter warranty extends to manufacturing faults that are determined within the period of warranty. The warranty excludes components that are replaced during maintenance, such as batteries, accumulators, lamps etc. The warranty claim extends to restoring the meter to readiness for use but not, however, to any further claim for damages. Improper handling or unauthorized opening of the instrument invalidates any warranty claim.

To ascertain the warranty liability, return the meter and proof of purchase together with the date of purchase freight paid or prepaid.

Accuracy when going to press

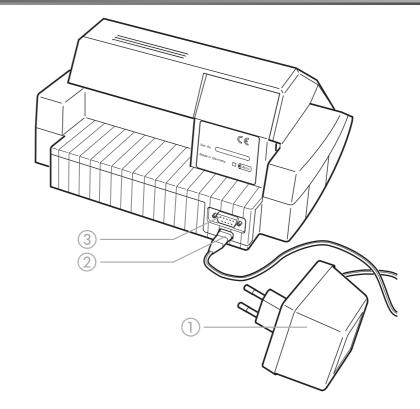
The use of advanced technology and the high quality standard of our instruments are the result of continuous development. This may result in differences between this operating manual and your meter. We cannot guarantee that there are absolutely no errors in this manual. We are sure you will understand that we cannot accept any legal claims resulting from the data, figures or descriptions. The information in this manual is subject to change without notice.


Contents

1. C	Overview
1.1	Description of the operating elements3
1.2	Identifying the connectors
1.3	Short manual4
	1.3.1 Measuring the concentration4
	1.3.2 Activating AQA24
1.4	Selecting and calling up the menu items5
	_
2. S	afety
2.1	Authorized use6
2.2	General instructions6
	2.2.1 Labeling of notes
	2.2.2 Dangers of disregarding the safety
	instructions
	2.2.4 Technical state of the meter
3. C	commissioning7
3.1	Preparing the photometer
3.2	Switching on the photometer
0.2	
4. N	leasuring the Concentration
4.1	Measuring using cell tests
4.2	Measuring using tests without barcode
1.2	(manual method selection)
	(, ,
5 N	leasuring the
· · · ·	
	Absorbance/Transmission
	Absorbance/Transmission10
A	
A	Absorbance/Transmission10 Switching to the Absorbance/ Transmission measuring mode10
4 5.1	Absorbance/Transmission 10 Switching to the Absorbance/ Transmission 10 measuring mode 10 Measuring the absorbance or transmission 10
4 5.1 5.2	Absorbance/Transmission10 Switching to the Absorbance/ Transmission measuring mode10
5.1 5.2 5.3	Absorbance/Transmission10Switching to the Absorbance/ Transmissionmeasuring modemeasuring mode
5.1 5.2 5.3 5.4	Absorbance/Transmission10Switching to the Absorbance/ Transmissionmeasuring modemeasuring mode
5.1 5.2 5.3 5.4	Absorbance/Transmission
5.1 5.2 5.3 5.4 6. D	Absorbance/Transmission10Switching to the Absorbance/ Transmissionmeasuring modemeasuring mode10Measuring the absorbance or transmission10Measuring using cell tests11Measuring using tests without barcode11
4 5.1 5.2 5.3 5.4 6. D 6.1	Absorbance/Transmission 10 Switching to the Absorbance/ Transmission 10 measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using tests without barcode 11 Occumentation 12 Resetting the number of the measured value 13
5.1 5.2 5.3 5.4 6.1 6.2	Absorbance/Transmission 10 Switching to the Absorbance/ Transmission 10 measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using tests without barcode 11 Occumentation 12 Resetting the number of the measured value 13 Download memory 13
5.1 5.2 5.3 5.4 6.1 6.2 6.3	Absorbance/Transmission 10 Switching to the Absorbance/ Transmission 10 measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using tests without barcode 11 Occumentation 12 Resetting the number of the measured value 13 Download memory 13
5.1 5.2 5.3 5.4 6.1 6.2 6.3	Absorbance/Transmission 10 Switching to the Absorbance/ Transmission 10 measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using cell tests 11 Occumentation 12 Resetting the number of the measured value 13 Download memory 13 Download of the methods list 15
5.1 5.2 5.3 5.4 6.1 6.2 6.3 7. N	Absorbance/Transmission 10 Switching to the Absorbance/ Transmission 10 measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using cell tests 11 Measuring using tests without barcode 11 Occumentation 12 Resetting the number of the measured value 13 Download memory 13 Download of the methods list 15 Method Parameters 16
5.1 5.2 5.3 5.4 6.1 6.2 6.3 7. N	Absorbance/Transmission 10 Switching to the Absorbance/Transmission 10 measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using cell tests 11 Measuring using tests without barcode 11 Occumentation 12 Resetting the number of the measured value 13 Download memory 13 Download of the methods list 15 Method Parameters 16 Citation form 17
5.1 5.2 5.3 5.4 6.1 6.2 6.3 7. N	Absorbance/Transmission 10 Switching to the Absorbance/ Transmission 10 measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using cell tests 11 Measuring using tests without barcode 11 Occumentation 12 Resetting the number of the measured value 13 Download memory 13 Download of the methods list 15 Method Parameters 16 Citation form 17 7.1.1 Changing the citation form 17
5.1 5.2 5.3 5.4 6.1 6.2 6.3 7. N 7.1	Absorbance/Transmission 10 Switching to the Absorbance/ Transmission 10 measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using cell tests 11 Measuring using tests without barcode 11 Occumentation 12 Resetting the number of the measured value 13 Download memory 13 Download of the methods list 15 Method Parameters 16 Citation form 17 7.1.1 Changing the citation form 17 7.1.2 Performing a difference measurement 18
5.1 5.2 5.3 5.4 6.1 6.2 6.3 7.1 7.2	Absorbance/Transmission 10 Switching to the Absorbance/ Transmission 10 measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using cell tests 11 Measuring using tests without barcode 11 Occumentation 12 Resetting the number of the measured value 13 Download memory 13 Download of the methods list 15 Method Parameters 16 Citation form 17 7.1.1 Changing the citation form 17 7.1.2 Performing a difference measurement 18
5.1 5.2 5.3 5.4 6.1 6.2 6.3 7.1 7.2	Absorbance/Transmission 10 Switching to the Absorbance/Transmission 10 Measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using cell tests 11 Measuring using tests without barcode 11 Pocumentation 12 Resetting the number of the measured value 13 Download memory 13 Download of the methods list 15 Method Parameters 16 Citation form 17 7.1.1 Changing the citation form 17 7.1.2 Performing a difference measurement 18 Selecting the unit 20 20 Malytical Quality Assurance (AQA) 21 Activating AQA 21
5.1 5.2 5.3 5.4 6.1 6.2 6.3 7. N 7.1 7.2 8. A	Absorbance/Transmission 10 Switching to the Absorbance/Transmission 10 Measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using cell tests 11 Measuring using tests without barcode 11 Occumentation 12 Resetting the number of the measured value 13 Download memory 13 Download of the methods list 15 Method Parameters 16 Citation form 17 7.1.1 Changing the citation form 17 7.1.2 Performing a difference measurement 18 Selecting the unit 20 20 Analytical Quality Assurance (AQA) 21 Activating AQA 21 8.1.1 Activating AQA using the AQA
5.1 5.2 5.3 5.4 6.1 6.2 6.3 7. N 7.1 7.2 8. A	Absorbance/Transmission 10 Switching to the Absorbance/Transmission 10 Measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using cell tests 11 Measuring using tests without barcode 11 Pocumentation 12 Resetting the number of the measured value 13 Download memory 13 Download of the methods list 15 Method Parameters 16 Citation form 17 7.1.1 Changing the citation form 17 7.1.2 Performing a difference measurement 18 Selecting the unit 20 20 Analytical Quality Assurance (AQA) 21 Activating AQA 21 8.1.1 Activating AQA using the AQA 21 MemoChip 21
5.1 5.2 5.3 5.4 6.1 6.2 6.3 7. N 7.1 7.2 8. A	Absorbance/Transmission 10 Switching to the Absorbance/Transmission 10 Measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using cell tests 11 Measuring using tests without barcode 11 Pocumentation 12 Resetting the number of the measured value 13 Download memory 13 Download of the methods list 15 Method Parameters 16 Citation form 17 7.1.1 Changing the citation form 17 7.1.2 Performing a difference measurement 18 Selecting the unit 20 20 Malytical Quality Assurance (AQA) 21 Activating AQA 21 8.1.1 Activating AQA using the AQA 21 MemoChip 21 8.1.2 Activating AQA via the menu guide 21
5.1 5.2 5.3 5.4 6.1 6.2 6.3 7. N 7.1 7.2 8. A	Absorbance/Transmission 10 Switching to the Absorbance/Transmission 10 Measuring mode 10 Measuring the absorbance or transmission 10 Measuring using cell tests 11 Measuring using cell tests 11 Measuring using tests without barcode 11 Pocumentation 12 Resetting the number of the measured value 13 Download memory 13 Download of the methods list 15 Method Parameters 16 Citation form 17 7.1.1 Changing the citation form 17 7.1.2 Performing a difference measurement 18 Selecting the unit 20 20 Analytical Quality Assurance (AQA) 21 Activating AQA 21 8.1.1 Activating AQA using the AQA 21 MemoChip 21

Contents

	8.1.5 8.1.6	Changing the password
8.2	8.2.1 8.2.2	meter monitoring (AQA1)
8.3	Total s solutio 8.3.1 8.3.2	system monitoring with standard ns (AQA2)
9. C		tion functions
9.1	Blank	value
		Activating the blank value measurement
9.2		ity correction41
		edjustment42 Setup43
		-
		ing the language43
		g the date/time44
11.4	Syster	n info
	-	ing method data46
13.	RS 23	32 C interface 48
13.1	Princip	ble course of the remote control48
13.2	Comm	and list
	•	t format of measured values
		ransmission49
13.5	Pin as	signment49
4.4	Maint	
		enance
	-	ing the lamp
14.2	Action	s to take if a cell is broken50
15	Fech n	ical Data51
16. \	What	to do if


1.1 Description of the operating elements

- 1 Display
- Menu call/Enter key
- ③ Scroll key
- ④ Recess for MemoChip
- (5) Absorbance measurement key
- Concentration measurement key
- ⑦ Notch for cell alignment
- ⑧ Round cell shaft
- Storage space for analysis regulations (short form)
- Over with integrated on/off switch

1.2 Identifying the connectors

- ① Power pack
- Connection for power pack
- ③ RS 232 interface

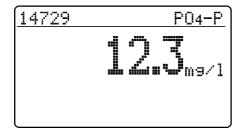
1.3 Short manual

The short manual lists all of the steps necessary to determine the concentration of a sample and to activate AQA2 at a glance.

1.3.1 Measuring the concentration

- To switch on the photometer, open the cover. The photometer performs a check (*Self-Check*) of the entire system and then switches automatically to the *concentration measuring mode*.

<u>Concentration</u>


Measuring mode, concentration

 Insert the round cell with barcode in the round cell shaft until it clicks into place.

Align the line mark to the notch of the photometer. The message *measuring... appears.*

If the *select method* menu is displayed, align the line mark of the round cell to the notch of the photometer.

The measured value appears on the display. Measured values outside the specified measuring range are output in small numerals. Repeat the measurement:

1.3.2 Activating AQA2

Place the AQA MemoChip in the recess on the photometer.
 The following display appears:

AQS

The action of placing the AQA MemoChip in the recess directly activates the AQA check without having to press any key.

Standard concentrations and tolerances are listed in the table "Spectroquant[®] CombiCheck and standard solutions" in the part, "General information".

1.4 Selecting and calling up the menu items

- To switch on the photometer, open the cover.
- Press 🛃.

The following display appears:

Setur documentation method parameter Meter Setur

Example:

The *documentation* menu item is preselected in the *setup* menu (\blacktriangleright).

Select a menu item, e. g. meter setup:

The following display appears:

<u>Setup</u> documentation method parameter Meter Setup The *meter setup* menu item is preselected (\blacktriangleright).

- Call up the meter setup submenu by pressing E.

The required menu item is

- selected using
- called up using
- meter setup return ▶AQA functions correction funct. adjust zero set date/time

Selection lists:

- Changes to the settings are accepted after confirmation by pressing
- Current settings are marked by "+".
- Change to other configuration levels by
 - Selecting the menu item, return
 - Pressing
- Scroll with 🕣.

Character input:

– by using 🕣

the character to be input is shown in reverse video.

– Confirm each input with **I**.

This operating manual contains basic instructions to be followed in the commissioning, operation and maintenance of the meter. Consequently, all responsible personnel must read this operating manual before

2.1 Authorized use

The photometer is authorized exclusively for analyzing substances in water and aqueous solutions using round cells or rectangular cells (special optical glass).

working with the meter. The operating manual must always be available in the vicinity of the meter.

Observe the technical specifications of the cells according to chapter 15 TECHNICAL DATA. Any other use is considered unauthorized.

2.2 General instructions

The photometer is constructed and tested according to the EN 61010-1 safety regulations for electronic measuring instruments. It left the factory in a safe and secure technical condition.

The smooth functioning and operational safety of the photometer can only be guaranteed under the climatic conditions specified in chapter 15 TECHNICAL DATA of this operating manual.

Opening the photometer or adjustment, maintenance and repair work must only be performed by personnel authorized by the manufacturer.

The only exceptions to this are the activities described in chapter 14 MAINTENANCE. Non-compliance results

2.2.1 Labeling of notes

indicates notes that you must read - for protect your meter from being damaged. in the loss of warranty claims.

Follow the points listed below when operating the photometer:

- Follow local safety and accident prevention regulations.
- Observe the enclosed instructions concerning reagents and accessories.
- Observe the regulations when dealing with dangerous substances.
- Follow the operating instructions at the workplace.
- Use only original spare parts.

2	/	Î	

your own safety, the safety of others and to

indicates notes that draw your attention to special features.

2.2.2 Dangers of disregarding the safety instructions

Disregarding the safety instructions can adversely affect the safety of both the user and the environment as well as the equipment.

2.2.3 Qualification of the personnel

The personnel responsible for the commissioning, operation and maintenance must have the necessary qualifications for this work. If the personnel do not have the required skills they have to be instructed.

2.2.4 Technical state of the meter

It is the responsibility of the operator to continuously observe the overall technical condition (externally recognizable deficits and damage as well as alterations to the operational behavior) of the meter. If safe operation is no longer possible, the equipment must be taken out of service and secured against inadvertent operation.

Non-compliance with the safety instructions will result in the loss of any warranty claims.

Furthermore, it must be ensured that the personnel read and completely understand the present operating manual.

Safe operation is no longer possible if

- the equipment has been damaged in transport
- the equipment has been stored under adverse conditions for a lengthy period of time
- the equipment is visibly damaged
- the equipment no longer operates as prescribed. If you are in any doubt, please contact the supplier of the photometer.

The photometer operates at an environmental temperature of +5 °C to +40 °C. During transport from cold to warm surroundings, condensation can form resulting in the malfunction of the meter. Before putting the photometer into service, wait until it has adapted to the new environmental conditions (see also chapter 15 TECHNICAL DATA).

3.1 Preparing the photometer

 Place the photometer on a hard, flat surface and protect it against intensive light and heat.

Line operation

- Plug the original power pack into the socket on the photometer
- Plug the power pack into the line socket
- Switch on the photometer (open the cover).

Battery operation

- Charge the battery for approx. 5 hours before the initial commissioning. To do this:
 - Plug the original power pack into the socket on the photometer
 - Plug the power pack into the line socket and then the battery will be charged.

During battery operation or when the meter is at a standstill for longer periods of time, the battery runs down. This can result in your photometer no longer being ready for operation.

When the following symbol is displayed, charge the

3.2 Switching on the photometer

- To switch on the photometer, open the cover. The photometer performs a check (*Self-Check*) of the entire system and then switches automatically to the *concentration* measuring mode.

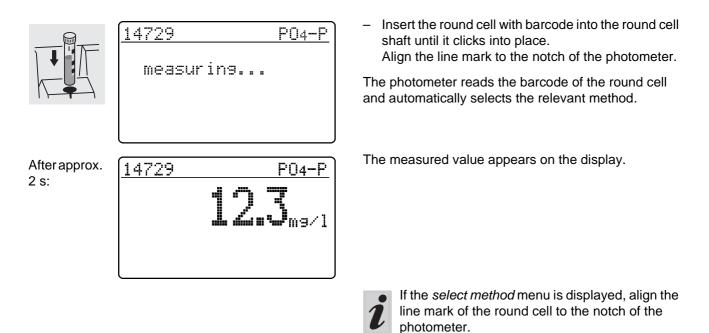
Sel	f-C	heck		
				_

After approx. 5 s:

insert cell

Concentration

Self-check of the photometer


Automatic change to the measuring mode, *concentration*

Call up the *concentration* measuring mode by actuating .

 Concentration
 Measuring mode, concentration

 insert cell
 Insert cell

4.1 Measuring using cell tests

4.2 Measuring using tests without barcode (manual method selection)

When measuring using cell tests without barcode, the method must be selected manually.

metk	nod:	1 86	
			14729
			P04-P
لې	0.	.5-25.	0 mg/l

The last method set up manually appears on the display.

- Select the required method with 🕣
- Confirm with 📴.

	14729	<u>P04-P</u>
	measuring	
After approx. 2 s:	14729	P04-P
2 0.	12	.3 m9/1
	ا استاد مالد	""" m9/1

The measured value appears on the display.

5. Measuring the Absorbance/Transmission

5.1 Switching to the Absorbance/ Transmission measuring mode

- Call up the setup measuring mode by actuating

Setup documentation method parameter ≱abs./trm. % meter setup In the setup menu, call up the abs./trm. % submenu.

Selection of the measuring mode:

- absorbance
- transmission

5.2 Measuring the absorbance or transmission

 Call up the absorbance or transmission measuring mode (depending on the selection in the abs./trm. %

▶absorbance

return

transmission

menu) by actuating (1).

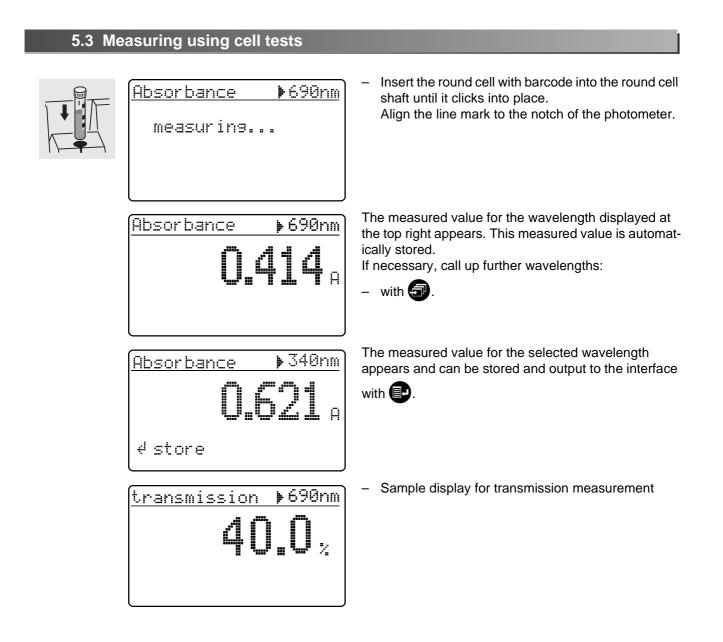
Absorbance		
insert	cell	

<u>transmission</u>

insert cell

Measuring mode, absorbance

Measuring mode, transmission



The transmission measurement is not described separately in the following example as it operates in exactly the same way as the absorbance measurement. However, the result of the measurement is displayed as % Transmission instead of A for Absorbance.

A measured reference absorbance is also effective in the measuring mode, *transmission*. It is displayed as reference absorbance.

5.4 Measuring using tests without barcode

<u>Absorbance</u> ►340nm

The last wavelength measured appears on the display.

Select the wavelength:

- Start the measurement:

∉ measure

The measured values can be documented as follows:

- Storage in the measured value memory
- Output to a connected printer via the serial interface (automatic when a printer is connected)
- Transmission to a PC for further processing (by using the relevant software, e.g. Multi/ACHATII or less conveniently - by means of a terminal program).
- To switch on the photometer, open the cover.
- Press 🛃.

The following display appears:

Setup documentation method parameter Meter Setup

- Call up the *documentation* menu with **I**.

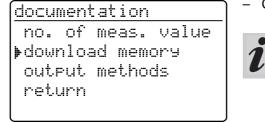
documentation

▶no. of meas. value download memory output methods return

The following functions can be selected:

- no. of meas. value
 - reset the number
- download memory
 - total
- from date
- output methods
 - all

The current settings are marked by "#" in the selection lists of the respective submenus.


6. Documentation

6.1 Resetting the number of the measured value

documentation ▶no. of meas. value download memory output methods return	 Call up the no. of meas. value submenu.
no. of meas. value	 yes
reset number:	The numbering of the measured values starts again
≯Yes +	with 001 (default) no
No	Consecutive numbering of the measured values
return	(from 001 to 999) Select the menu item with Confirm with

6.2 Download memory

The measured value storage can be selectively downloaded to either the display or serial interface. The selection of the output medium is made after the specification of the sorting criteria.

download memory ▶total from date return

- Call up the *download memory* submenu.

The download memory menu item only appears after at least one measurement has been performed.

The following sorting criteria can be set:

- total all stored measured values
- from date all measured values from a special date
- Select the menu item with 🖅
- Confirm with **E**.

Selecting "total"

<u>dowr</u>	nload	memory
▶to	displ	ач
to	print	/er/PC
ret	urn	

Select the output medium:

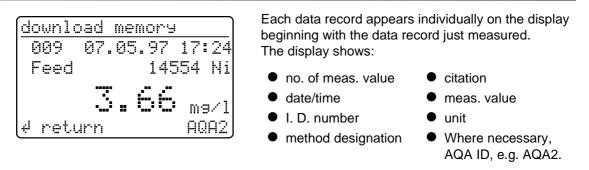
- to display
- to printer/PC (serial interface).

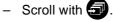
Select the menu item with 🖅

Confirm with to start the memory download.

Selecting "from date"

download memory from date: **1ਈ**.02.98 ਦ

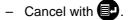

<u>download memory</u> ▶to display to printer/PC return


- Input the date using
- Erase the input using C
- Confirm with **EP**.

Select the output medium:

- to display
- to printer/PC (serial interface).
- Select the menu item with
- Confirm with I to start the memory download.

Memory download to display



Memory download to printer/PC

```
download memory
data transmission
runs:
121
```

Memory download to the serial interface:

 Display of the transmitted no. of measured value (continuation display) beginning with the last measured value.

Sample printout:

d cancel

003	14541	10.02.98	11:56:33	t	80	mg/l	COD
002	14541	10.02.98	11:54:21	t	70	mg/l	COD
001	14729	03.02.98	18:30:53		* 0.3	mg/l	PO4-P

6.3 Download of the methods list

The stored methods are downloaded to the printer/PC via the serial interface.

documentation no. of meas.value download memory poutput methods return	 Call up the <i>output methods</i> submenu.
outrut methods ▶all return	 The following parameters can be set: <i>all</i> – Download of all stored methods Select the menu item with Start the download with

The following parameters can be set in the *method parameters* menu:

- citation
- unit
- To switch on the photometer, open the cover.
- Press 🗗.

The following display appears:

Setup documentation pmethod parameter AQA-Check Meter Setup	 Call up the method parameters submenu.
<u>method parameter</u> method: <u>1</u> 86 14729 P04-P ↓ 0.5-25.0 mg/1	Input the method numberConfirm with .
method parameter ▶Citation Dilution return	 Select the menu item with Call up the parameter by pressing

7.1 Citation form

7.1.1 Changing the citation form

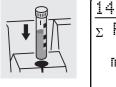
Example:

Change the citation form from $"NH_4-N"$ to $"NH_4"$.

<u>method parameter</u> ▶Citation Dilution return	 Call up the <i>citation</i> submenu.
Citation 14739 ▶NH4-N * NH4 return	The current setting: <i>NH₄-N</i> (♣).
Citation 14739 NH₄-N ★ ▶NH₄ return	 Using , scroll to NH₄ Confirm with .
Citation 14739 NH₄-N ▶NH₄ ★ return	– Citation form NH₄ is set (♣).

7.1.2 Performing a difference measurement

Difference measuring is possible for some methods (e.g. Iron II/III, Ca-/Mg Hardness).


For more information on this, see part, "Analysis specifications".

Example:

Determination of iron (II) and iron (III).

method parameter method: 106 I4896 Fe ↓ 1.0-50.0 mg/1 <u>method parameter</u> ▶Citation Dilution return	 Enter method <i>106</i> Confirm with . Call up the <i>citation</i> menu item.
Citation 14896 ▶Fe ★ FeII,FeIII Δ return	The current setting: <i>Fe</i> Using ⊕ scroll to <i>Fe II</i>, <i>Fe III∆</i> Confirm with ●.
Citation 14896 Fe ▶FeII,FeIII Δ+ return	– Citation form Fe II, Fe III∆ (♣) is set.

Change to measuring by pressing I

 $\frac{14896}{\Sigma} Fe$ measuring...

- Start the 1st measurement by inserting cell 1.

7. Method Parameters

Afterapprox. 2 s:	$14896 FeII, FeIII_{\Delta}$	The 1st measured value appears on the display: Σ <i>Fe</i> . - Remove cell 1
	3.2 mg/1	– Press 📭.
	Σ Fe 4 FeII	
		 Start the 2nd measurement by inserting cell 2.
	measuring	
Afterapprox. 2 s:	$ 14896 FeII, FeIII_{\Delta} $	The 2nd measured value appears on the display: <i>Iron II</i> .
	2.1 mg/1	 Continue to the display of both measured values using .
	FeII 4 FeII,FeIII	
	$14896 FeII,FeIII_{\Delta}$	Display of both measured values as a summary.
	FeII 2.1 mg/l	
	FeIII 1.1 mg/l	

7.2 Selecting the unit

The preset unit is "mg/l". It can be changed to "mmol/l".

<u>method parameter</u> Citation ▶unit return	 Call up the <i>unit</i> submenu.
unit 14729 ▶mg/l + mmol/l return	The current setting: <i>mg/l</i> (+) – Using scroll to <i>mmol/l</i> – Confirm with .
unit 14729 mg/l ♥ ♥mmol/l return	– Unit <i>mmol/I</i> (⊕) is set.

Analytical quality assurance (AQA) can be performed in two steps:

- AQA1 Photometer monitoring
- AQA2 Total system monitoring with standard solutions

The total system monitoring (AQA2) is a method-specific check using standard solutions.

If this is performed successfully, it also includes photometer monitoring (AQA1).

See also part "General information" for further information on Analytical Quality Assurance (AQA).

The AQA mode must be activated in the photometer. In the delivery state it is switched off.

The AQA mode is activated:

- by inserting the AQA MemoChip
 - monitoring of the total system using standard solutions (AQA2)
- by using a menu to select
 - monitoring of the photometer (AQA1)
 - monitoring of the total system using standard solutions (AQA2)

8.1 Activating AQA

- To switch on the photometer, open the cover.

8.1.1 Activating AQA using the AQA MemoChip

Place the AQA MemoChip in the recess on the photometer.

The following display appears:

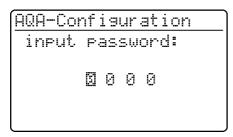
L

alopiay appearer	
AQA-Check	
insert	cell

The action of placing the AQA MemoChip in the recess directly activates the AQA2 check (see section 8.3.4).

8.1.2 Activating AQA via the menu guide

<u>Setup</u> documentation method parameter Meter Setup

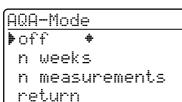

meter setup
return
PAQA functions
correction funct.
adjust zero
set date/time

- Call up the *meter setup* submenu.

The *meter setup* submenu appears with the AQA functions menu item preselected.

- Confirm with

A password request appears:


If the input was incorrect:

<u>AQA-Configuration</u>

wron9 password

After the password has been successfully input, the AQA configuration submenu appears:

AQA-Configuration return AQA-Mode AQA-Standards AQA-Intervals System locked

Setup

documentation method parameter)AQA-Check Meter Setup

AQA-Check

- Meter
- ▶system
- return

A separate password protects settings of the AQAconfiguration against unauthorized access (Changing the password see section 8.1.5).

- Input the password with Input the passwo
 - Only **numeric** characters are allowed. Default: *0000*
- Confirm with I.
- Repeat the input.

If you have forgotten the password, contact the service department.

- Call up the AQA mode function.

Default: off (no monitoring)

- Select AQA mode:
 - off
 - n weeks
 - n measurements
- Confirm with 🛃.
- In the setup menu, call up the AQA check submenu.

Selection of the AQA mode:

- meter
- system

The menu item, *meter*, only appears after the corresponding PhotoCheck standards have been input (see section 8.2.1).

8.1.3 Changing AQA intervals

AQA intervals specify the interval between two AQA checks. A fixed time interval (*n weeks*) or a number of measurements (*n measurements*) can be specified as the interval.

The respective values that were input remain stored even if they are not activated.

Additionally, two separate intervals can be set up for both photometer monitoring (AQA1) and system monitoring (AQA2).

For the total system monitoring (AQA2), a change of the time interval (*n weeks*) even retroactively applies to monitoring processes that are already running.

Changing the number of measurements (*n measurements*) does not affect monitoring processes already running.

Thus, individual numbers of measurements can be set for different methods.

<u>AQA-Configuration</u> return AQA-Mode AQA-Standards DAQA-Intervals System locked

AQA interval, "n weeks"

The AQA interval, n weeks, is only effective if the n weeks setting is active for the AQA mode function. The specified number of n weeks applies to:

- the photometer with AQA1
- all methods with AQA2.
- In the AQA intervals menu, call up the n weeks submenu.

AQA-Intervals AQA-Meter: IM w AQA-System: 04 w 4 confirm After an interval has expired, the following consequences become effective:

- Warning and loss of AQA identification
- Locking of the method for concentration measurements (as long as the locking is active).

Setting ranges:

- Photometer monitoring (AQA1):
 - 1 to 52 weeks (default: 12 weeks) or
 - 1 to 9999 measurements (default: 1500)
- Monitoring of the total system using standard solutions (AQA2):
 - 1 to 52 weeks (default: 4 weeks) or
 - 1 to 9999 measurements (default: 100)

With the *n* measurements setting, a difference measurement (see section 7.1.2) is counted as one measurement only.

In the AQA configuration menu, call up the AQA intervals submenu.

According to the selection in the AQA mode menu, a fixed time interval (*n weeks*) or a number of measurements (*n measurements*) is set in the AQA intervals menu.

If the AQA mode function is switched off, the AQA intervals submenu is not available.

- Enter the time interval for AQA meter

with 🖅, confirm with 📳

AQA interval, "n measurements"

The AQA interval, *n* measurements, is only effective if the *n* measurements setting is active for the AQA mode function.

The AQA2 check starts the monitoring for one method at a time.

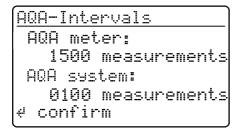
The specified number of measurements applies to:

- the instrument with AQA1 (total number of measurements performed, independent of whether AQA2 is active for some parameters)
- each method an AQA check will then be performed for with AQA2.

Thus, it is possible to define individual numbers of measurements for different methods.

The measurements are counted separately for each monitored method.

The monitoring intervals of AQA2 monitoring processes already started for other methods are not affected by changing the number of *measurements*. Thus the number of *measurements* can be set for further methods no matter which monitoring processes were started before.



When an AQA2 check is performed, the number of *measurements* last set in the AQA *intervals* menu is automatically taken over.

Therefore, you should check and, if necessary, change the currently set number of *measurements* before each AQA2 check.

The currently set number of *measurements* for the AQA2 check is saved for the active method and output in the report individually (section 8.3.4).

 In the AQA intervals menu, call up the n measurements submenu.

- To return without change, press P three times
- Enter the number of measurements for AQA meter

with 🕣, confirm with 📴

- Enter the number of measurements for AQA system

with 🖅 , confirm with 🖅

8.1.4 Locking the system

The function *system locked* is effective if, for a monitored method,

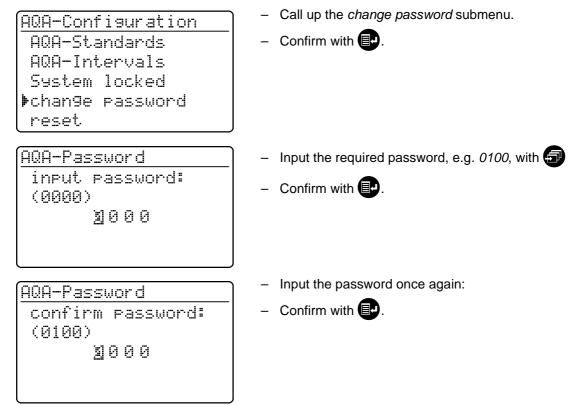
- no AQA check was performed,
- the AQA check "system" has expired.

As a result, a concentration measurement is not possible for this method.

 AQA-Configuration
 - Call up the system locked submenu.

 return
 AQA-Mode

 AQA-Mode
 AQA-Intervals


 AQA-Intervals
 - Select the menu item with

 System locked
 - Confirm with

 off
 - Confirm with

8.1.5 Changing the password

When delivered, the default password is *0000*. This password can be changed as follows:

8.1.6 Performing an AQA reset

If the Analytical Quality Assurance is to be switched off completely or reset to the delivery state, this can be made via the *reset* function in the *AQA configuration* submenu.

AQA-Configuration AQA-Intervals System locked change password	 Call up the <i>reset</i> submenu Confirm with .
▶reset return	Select the <i>reset</i> menu item
<u>AQA-Configuration</u>	 Confirm with Confirm with An AQA reset is performed.
▶reset cancel	

8.2 Photometer monitoring (AQA1)

8.2.1 Entering PhotoCheck standards

A Spectroquant[®] PhotoCheck is required to perform the photometer monitoring (AQA1). **At least 1 standard** must be input. We recommend, however, to input all available standards.

- Press D to call up the *setup* menu
- Call up the *meter setup* submenu.
- Call up the AQA functions submenu.
- Input the password
- Call up the AQA standards submenu and the following display appears:

AQA-Standards PhotoCheck standard solution return - Call up the *PhotoCheck* submenu.

Phot	oCheck	-Stan	dar ds
▶in₽	ut		
outi	put		
era:	se		
ret	urn		

Select between

 input Input the theoretical value (absorbance) from the lot certificate of Spectroquant[®] PhotoCheck

- output Print/display theoretical values
- erase

Erase theoretical values.

The *erase* and *output* menu items only appear after at least one standard has been input.

8. Analytical Quality Assurance (AQA)

Example:

445-1 nm, theoretical value (absorbance) 0.200, admissible tolerance \pm 0.020

PhotoCheck-Standards return ▶445-1 445-2 445-3 445-4	 Select with Quit via the menu item, <i>return</i> Confirm with
PhotoCheck 445-1 theor.val.: ⊠.200 A	 Input the theoretical value, 445-1 Confirm with . If the standard is already stored, this value appears on the display.
∀confirm <u>PhotoCheck 445-1</u> theor.val.: 0.200 A Tolerance: ±0.020 A	 Input the tolerance with Confirm with
<pre>#confirm PhotoCheck-Standards return ▶445-1 ✓ 445-2 445-3 445-4</pre>	 PhotoCheck standard 445-1 is input. Select the next one with Input all PhotoCheck standards in this way.

8.2.2 Download of PhotoCheck standards

PhotoCheck-Standards input ▶output erase return	 In the <i>PhotoCheck standards</i> submenu, call up the <i>output</i> menu item.
download PhotoCheck ▶to display to printer/PC return	 Select the output medium: to display to printer/PC (serial interface). Select with Confirm with to start the download.

Example: Report output

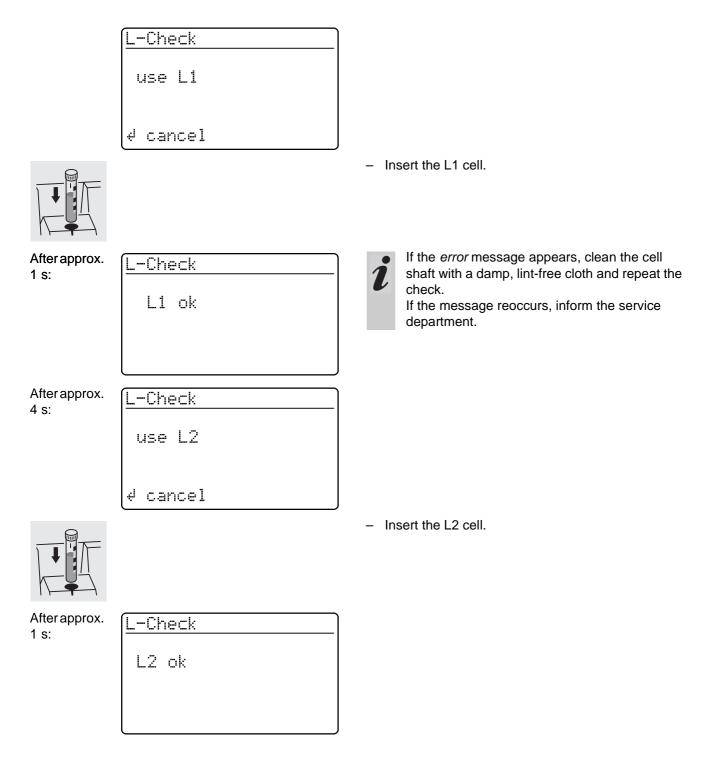
AQA check meter 26.08.97		AQA1 13:19		
AQA interval		12 weeks		
test sol. 445-1	unit A	theor. val. 0.200	tolerance 0.020	AQA date 26.08.97

8.2.3 Erasing PhotoCheck standards

At least 1 standard must still be stored to be able to perform the AQA check function (meter monitoring).

PhotoCheck-Standards input output ∳erase return	 In the <i>PhotoCheck standards</i> submenu, call up the <i>erase</i> menu item.
erase PhotoCheck 445-2 445-3 ▶445-4 return	 Displays the stored PhotoCheck standards: Select with Quit via <i>return</i> Erase with

8.2.4 Performing Photometer monitoring


Photometer monitoring (AQA1) includes a check of the

- Light barriers using the L1/L2 cells (contained within the scope of delivery of the Spectroquant[®] PhotoCheck)
- Absorbance measurement using PhotoCheck

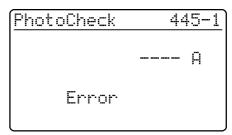
standards.

- Press D to call up the setup menu
- Call up the AQA check submenu
- Call up the *meter* submenu.


The following display appears:

After successful light barrier testing, the PhotoCheck standards (test solutions) are measured.

Example:


3 s:

Cancel: To cancel the check means no release for the next "meter" AQA interval!

Insert a cell with the test solution, 445-1. The photometer measures the absorbance of the test solution and compares the result with the value entered.

... or error message

Error elimination:

- 1. Repeat the measurement (insert the cell again)
- 2. If necessary, perform a zero adjustment and repeat the check
- 3. Exchange the test solution (each packet contains two identical test solutions)
- 4. Use a new Spectroquant[®] Photo-Check packet
- 5. Quit and have the photometer checked in the factory

The absorbance test is terminated if an error message occurs and the meter is not released. On switching on, the warning message "AQA interval expired" appears until the AQA was successfully performed or the AQA mode was switched off.

Example: Report output

AQA check meter 26.08.97 operator:			AQA1 10:23		
AQA interval AQA check AQA1			12 weeks ok		
L check			ok		
test sol.	meas. value	unit	theor. val.	tolerance	result
445-1	0.211	А	0.200	0.020	ok

8.3 Total system monitoring with standard solutions (AQA2)

8.3.1 Entering standards

The standards compiled in the table "Spectro-quant[®] CombiCheck and standard solutions" (see part "General information") are already stored method-specifically in the photometer. These values can be overwritten.
For total system monitoring (AQA2), only one standard per test can be stored at a time. The input of a standard is only complete with the input of the tolerances for finding it again, i.e. it is then first stored (no premature quitting).

- Press I to call up the setup menu
- Call up the meter setup submenu.
- Call up the AQA functions submenu
- Input the password
- Call up the AQA standards submenu and the following display appears:

AQA-Standards PhotoCheck Þstandard solution return - Call up the standard solutions submenu.

<u>standard solution</u> Dinput output erase return

input	standard	
		_

method: **1**86 14729 PO4-P

PO4−P ¢ 0.5-25.0 mg/1 Select between

- input
- Enter standards*output*
- Print/display standards
- erase
 Erase standards.

Displays the last selected method.

- Select the method with
- Confirm with
- Input the standards.

Example:

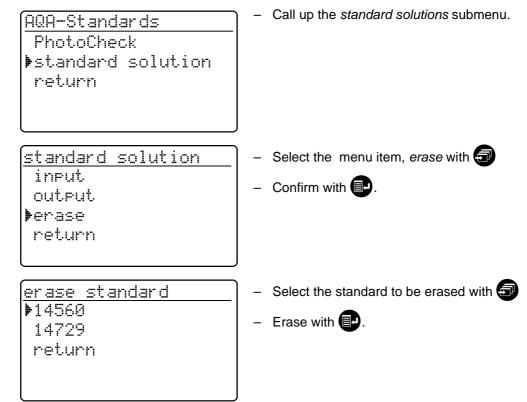
Method 14729 with a preset theoretical value of 15.0 mg/l and tolerance of 1.0 mg/l (CombiCheck 80).

Change to: theoretical value = 8 mg/l, tolerance = 0.7 mg/l (CombiCheck 20).

(input standard	
INPUL Standard	– Confirm with 🛃.
method: <u>3</u> 86	
14729	
µ 0.5-25.0 mg/1	
standard 14729	 Enter the new theoretical value, e.g. 8.0 mg/l, with
theor.val.: <u>15</u> .0 mg/l (06.3-18.8 mg/l)	Values in parentheses indicate the range in which the theoretical value should move.
	– Confirm with 🗐.
ℓ confirm	-
standard 14729	 Input the tolerance (0.7 mg/l) with
theor.val.: 08.0 mg/1	 Confirm with IP.
Tolerance: ±∑1.0 mg⁄l	
4 confirm	
+ COLITIL.III	
standard 14729	Both standard and tolerance values have been over- written.
theor.val.: 08.0 mg/1	 Confirm with I.
Tolerance: ±00.₪ mg/l	_
∉ confirm	
[···· ·· ··]	

8.3.2 Output of standards

The current list of stored standards is output via the RS 232 interface (PC/printer) or via the display.


<u>standard solution</u> input •output erase return	 Select the <i>output</i> submenu Confirm with e.
download Standard ▶to display to printer/PC return	 Select the output medium: to display to printer/PC (serial interface). Select with Confirm with to start the download.
Example: Report output	

Example: Report output

AQA check system 26.08.97		AQA2 13:57		
system locked		on		
method	unit	theor. val.	tolerance	AQA date
method 14554	unit mg/l	theor. val. 2.00	tolerance 0.20	AQA date 24.08.97

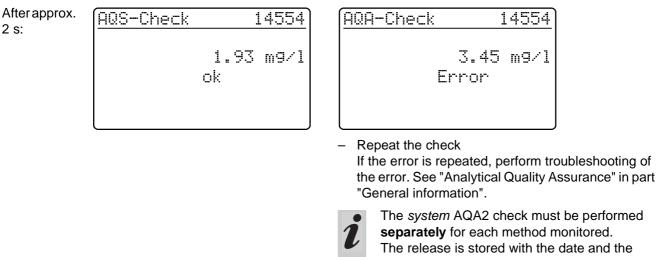
8.3.3 Erasing standards

Erasing the method-specific standard solutions leads to the change of the measured value identification from AQA2 to AQA1 (with activated AQA mode).

8.3.4 Monitoring of the total system using standard solutions

The AQA2 check can be performed after it has been activated (see section 8.1). The following display appears:

AQA-Check	
insert cell	


For AQA2 with the setting, *n* measurements, we recommend to check and, if necessary, change the currently set number of measurements before each AQA check (8.1.3 CHANGING AQA INTERVALS).

 Insert cell with prepared solution ready to be measured (e.g. using Spectroquant [®] CombiCheck). The photometer reads the barcode, identifies the method and performs the AQA2 check.

AQA check OK ...

2 s:

The system AQA2 check must be performed separately for each method monitored. The release is stored with the date and the specified interval. The AQA2 interval system set up for the respective method begins again.

Example: Report output (AQA mode: n weeks)

AQA check system 26.08.97 operator:			QA2 1:02		
AQA interval		4 v	veeks		
method	meas. value	unit	theor. val.	tolerance	result
14554	1.95	mg/l	2.00	0.20	ok

... or error message

Example: Report output (AQA mode: n measurements)

AQA check system 26.08.97 operator:	AQA2 11:02				
AQA interval	100 measurements				
method	meas. value	unit	theor. val.	tolerance	result
14554	1.95	mg/l	2.00	0.20	ok

- To switch on the photometer, open the cover.
- Press 🛃.
- In the setup menu, call up the meter setup submenu.
 The following display appears:

Meter Setup return AQA Functions Decorrection Funct. adjust zero set date/time Call up the correction funct. submenu.

The following display appears:

Correction Funct. Delank Value Turbidity Correct. return Select the correction function:

- blank value
- turbidity correct.

- Confirm with

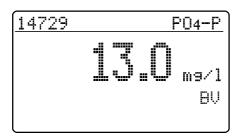
9.1 Blank value

The blank value (= reagent blank value) for each method is stored in the photometer. When the *blank value* function is active, the stored value is ignored and the measured value of a self-prepared reagent blank solution is used instead.

This procedure increases the measuring accuracy for some tests (for more information, see part "Analytical procedures").

A blank value is always stored for the method that was just called up. A maximum of 10 measured blank values can be stored, each of which is permanently assigned to a method.

A blank value remains stored until it is erased (menu item, *erase blank value*) or overwritten.


The *reset setup* function sets the *blank value* to *off*. The stored blank values, however, remain stored. The *reset total* function resets all settings and blank values at once.

If a measured blank value is stored and the *blank value* function is active for a method, this blank value is used for determining the measured value and the measured value is documented accordingly.

The blank value function is not active when delivered.

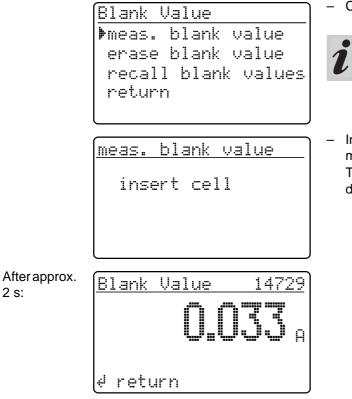
Measuring the concentration with a blank value

- Press to call up the *concentration* measuring mode.

The value measured against the prepared blank solution is displayed.

9.1.1 Activating the blank value measurement

- In the *correction funct*. menu, call up the *blank value* submenu. The following display appears:


blank value meas. •Off • on	 The <i>blank value meas.</i> function appears: Select the <i>on</i> menu item with Confirm with
return	 The stored blank values determined from blank solutions prepared by the user can be deactivated by switching off the blank value measurement. When doing so, the blank values remain stored in the memory and can be reactivated later. Activating or deactivating the blank value function applies to all measurements using methods a blank value was stored for in the memory.
e function is active and appears in the	

The *blank value* function is active and appears in the *setup* menu:

Meter Setup return AQA Functions Correction Funct. Padjust zero set date/time - To measure the blank value, call up the *blank value* submenu in the *setup* menu.

9. Correction functions

9.1.2 Measuring the blank value

Or, if all 10 storage locations for blank values are already occupied:

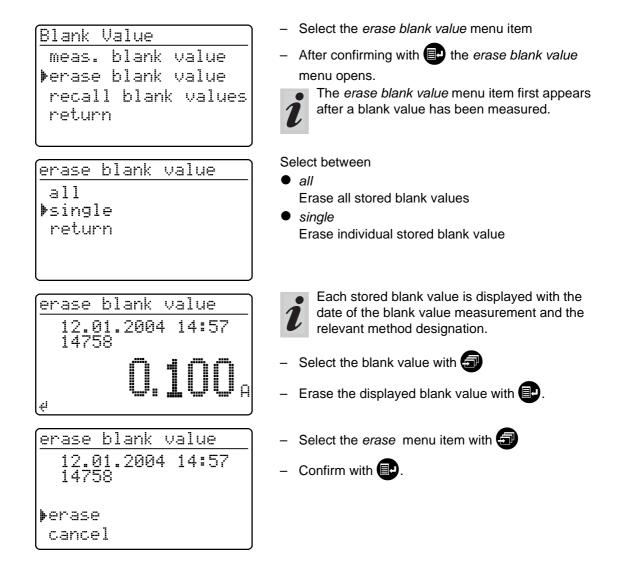
<u>meas. blank value</u> error: blank value memory full ▶return Blank Value

meas. blank value ▶erase blank value recall blank values return

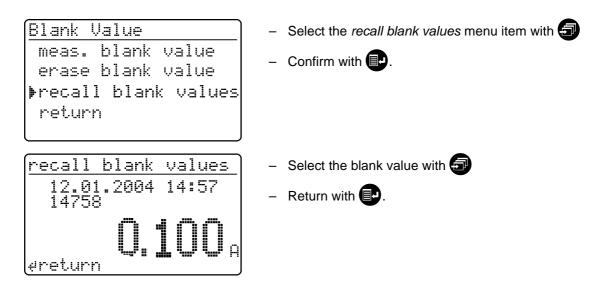
9.1.3 Erasing blank values

A measured blank value is erased via the menu item, erase blank value.

- Call up the meas. blank value menu item.



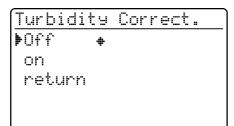
The menu items, *erase blank value* and *recall blank values* first appear after at least one blank value has been measured.


Insert a cell with blank solution to start a measurement.

The message, *measuring...*, appears on the display.

- If the blank value of a method for which a blank value was already stored is measured again, this error message does not appear and the new measured value replaces the old measured value (new date as well).
- Selecting the menu item, *return*, returns to the menu item, *blank value*
- Before measuring and storing erase the old blank value.

9.1.4 Recalling blank values



9.2 Turbidity correction

Turbidity correction is used in sample solutions that contain finely distributed suspended particles. The suspended particles cause a light absorption. This leads to incorrect (too high) measured values. The function remains permanently switched on after it has been activated. Values that were measured using turbidity correction are given an identifier in the **display** and in the **documentation** (printout and storage).

- In the *correction funct.* menu, call up the *turbidity correct.* submenu.

The following display appears:

The turbidity correct. function is not active when deliv-

This function is not necessary, or useful, in all

methods. If the turbidity correction is active, the photometer automatically decides whether to

perform the function or not depending on the

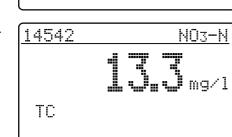
The *turbidity correct.* function appears:

- Select the on menu item with 🕣
- Confirm with **EP**.

method.

ered.

Press If to call up the *concentration* measuring mode.


Concentration

insert cell

- Insert the measuring cell.

Display of the measured value with turbidity correction switched on: Identified by *TC*.

After approx. 2 s:

Warning of excessive turbidity:

If the turbidity absorbance of *0.100* A is exceeded, the meter displays the measured value together with a warning.

1454	2	N03-N
TC	hi9h	turbidity! 43 mg/l

Zero adjustment is necessary

- after changing the lamp
- after the error message, *PhotoCheck* (AQA1) occurs
- on initial commissioning
- if the photometer was mechanically stressed, e.g. percussion, transport
- if the ambient temperature changed by more than 5 °C since the last zero adjustment
- at least every six months.

When performing the zero adjustment observe the following points:

- Only use a clean, scratch-free round cell with distilled water. A prepared zero cell is provided with your photometer. In addition, a prepared zero cell is contained in the scope of delivery of the *Photo-Check* (article 14693).
- If the round cell is visibly contaminated, or at least every 24 months, clean and refill it (minimum filling level 20 mm). Then check the cell for scratches.

Only perform the zero adjustment against distilled water in an optically perfect cell.

– Press 🖶

In the setup menu, call up the meter setup submenu.
 The following display appears:

<u>meter setup</u> return AQA functions correction funct. **þ**adjust zero set date/time - Call up the zero adjustment submenu with 🕣.

Insert a cell with distilled water.
 The message, *measuring...*, appears on the display.

After approx. 2 s:

<u>adjust zero</u>

adjust zero

insert cell

Successful zero adjustment

round ok

- To switch on the photometer, open the cover.
- Press 📳
- In the setup menu, call up the meter setup submenu.
 The following display appears:

meter setup return ▶AQA functions correction funct. adjust zero set date/time This chapter describes four functions of the *meter setup* menu:

- select language
- set date/time
- Performing a meter reset
- system info

1

11.1 Selecting the language

The following languages are stored in the photometer:

- Deutsch (German)
- English
- Français (French)
- Italiano (Italian)
- Português (Portuguese)
- Polski (Polish)
- Dansk (Danish)
- Svenska (Swedish)
- Español (Spanish)
- Nederlands (Dutch)
- Indonesia (Indonesian)
- Ceština (Czech)
- Magyar (Hungarian)
- Russkij (Russian)
- Türkçe (Turkish)
- Brasil (Brasilian)

meter setup		
correction funct.		
adjust zero		
set date/time		
▶select lan9ua9e		
system info		
<u>select language</u>		
return		
Deutsch		
▶English +		

Français

Italiano

This is the order in which the available languages appear in the select language menu.

The available languages are listed in the language of the respective country in the photometer.

When *Russkij* is selected as the language, the Cyrillic alphabet is used for the user guidance. Method designation and ID numbers are always displayed in Latin script. For output to the RS 232 C interface, Cyrillic characters are converted to Latin characters according to GOST.

- Call up the select language menu item.

- Select a language, e.g. English
- Confirm with
- Press the 🛃 key again:

Return to the *meter setup* submenu. The displays appear in English.

11.2 Setting the date/time

Meter Setup AQA Functions Correction Funct. adjust zero set date/time select lan9ua9e

Date/Time	
Date	MM.01.98
	(dd.mm.yy)
Time	16:45
	(hh∶mm)
🛃 confirm	

Call up the set date/time menu item.

Input the date using Confirm with Input the time with Confirm with

11.3 Reset

It is possible to reset the photometer to its factory settings (delivery state) in single steps. The *reset total* function resets all settings and blank values at once.

i

All AQA functions are retained when *meter setup* is used. See section 8.1.6 for AQA reset.

- Call up the reset menu item.

Meter Se	etup
set dat	e∕time
select	lan9ua9e
system	info
⊳ reset	
return	
▶ reset	info

(reset
▶total
meas.stora9e
Setup
return

Example: Performing a total reset

ſŗ	eset	
	reset	total
Þ	reset	
L	cancel	

Select between

- total Erase the measured value storage and reset the settings to the delivery state
- meas. storage
 Erase the measured value storage
- setup Reset all settings to the delivery state.
- Select the reset menu item
- Confirm with **P**.

A meter reset is performed (measured value memory and setup).

11.4 System info

Meter Setup	
adjust zero	
set date/time	
select lan9ua9e	
▶system info	
reset	
Matan Catur	
<u>Meter Setup</u>	

19.00

Software: 2.01

methods:

∉ return

- Call up the system info menu item.

Sample display

You will always find the latest method data for your photometer on the Internet. A method update contains all new test sets and methods respectively. Additionally, minor modifications of already existing methods are transferred with it. With a method update, you receive all new methods and, at the same time, can easily and conveniently update all method data.

The software provided for downloading contains the program file and method data. It can be downloaded from our homepage with a mouse click.

The files are packed in a self-decompressing archive file (*.exe) or in a zip file (*.zip) and can be decompressed after the download.

Carry out the update as follows:

To download and update the photometer method data via the built-in RS232 interface, you need the following:

- PC (Win 95 or higher) with Internet connection
- PC cable (available as an accessory)
- An *.exe or *.zip file from the Internet; contains the "UpdateMethodData.exe" program file and 6 method data files (pls6md.xxx, pls12md.xxx, plspekmd.xxx, nova30md.xxx, nova60md.xxx, nova400md.xxx; xxx = version).
 - Switch on the photometer (open the cover).
 - Switch on the PC.
 - Download from the Internet the software including the method data (*.exe or *.zip) and copy it into a separate directory or on a floppy disk.
 - Decompress the *.exe file with a double-click or decompress the *.zip file with Winzip.
 - Connect the serial interfaces of the PC and photometer with the cable.
 - Start the "UpdateMethodData.exe" program file by double-clicking. The "Update Method Data" window appears. In the upper half of the window there is the name of your photometer (among other things), behind it there is the method version in brackets (e.g. 8.00).

All method data are reloaded into the photometer with the update. The old method data are overwritten by this.

- Click on the "Search meter" button.
 The program automatically recognizes the connected photometer. Another "Update Method Data" window appears.
- Click on the "Start" button to start the method download. The process takes approx. 3 minutes. You can terminate it at any time by clicking on the "Cancel" button. In this case, however, the download has to be carried out once again completely so that the photometer can save the method data and is operative.

During the download, the following display appears on the photometer screen:

remote		
	_	After the download, confirm the "Data successfully downloaded" message. The download is finished. The photometer returns to the <i>concentration</i> measuring mode.
 eck whether the new method data are		
e photometer. roceed as follows:	_	In the setup menu, call up the meter setup submenu.
Meter Setup adjust zero set date/time select lan9ua9e Þsystem info reset	_	Call up the <i>system info</i> menu item.
Meter Setup Software: 2.01 methods: 19.00	he Th me	ample display (the software version is irrelevant re). The method version (here: 19.00) has to agree with the ethod version for your photometer in the "Update ethod Data" window during the download.
4 return		

Error messages

Message	Meaning	Remedy
No meter found	Connection PC - photo- meter out of order or not available	 Tightly connect the cable to the serial interfaces of the PC and photometer.
		 Use the correct cable
	Photometer not recognized	 Select the photometer manually

Via the interface, data can be

- output to a printer and
- exchanged with a personal computer (PC)

For this, the following items are available as accessories:

• Printer cable

- Printer
- Interface cable
- Communication software.

13.1 Principle course of the remote control

String to meter	Reply from meter	Operating mode
S <cr></cr>	> <cr></cr>	Remote (remote control)
Command xx (see 15.2 command list)	Reply string command xx <cr></cr>	Remote (remote control)
•		
CLOC <cr></cr>		Concentration measurement

The keyboard of the photometer is locked in the

remote operating mode.

13.2 Command list

Command	Function
S	Begin communication
CLOC	Switchover to normal operation (concentration measurement)
CDAT [anz]	Reads out stored measured values; [anz] = number of the measured values to be output
CMES [MMM]	Measurement and transmission of the concentration value with date/time; [MMM] = method number (e.g. 086 for method 14729)
CEXT [LLL]	Measurement and transmission of the absorbance value for the wavelength; [LLL] = wavelength
CBLA [MMM]	Measurement and transmission of the sample blank value; [MMM] = method number
CCLB [MMM]	Erase measured sample blank values; [MMM] = method number

The error message, *Invalid command*, appears if commands are unknown or cannot be carried out (e. g. if optional parameters do not agree with

the cell coding). Optional parameters [MMM] and

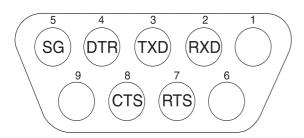
[LLL] need only be input for uncoded cells.

13.3 Output format of measured values

Character	Meaning
3	consecutive number (not required for interface commands CMES, CEXT and CBLA)
5	method designation
6	I. D. number
17	date and time
4	special characters
9	meas. value
10	unit
12	citation
4	AQA ID (AQA2/AQA1)

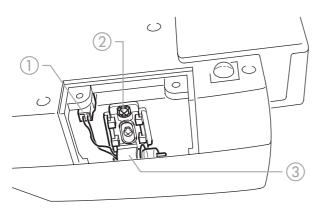
Notes:

Data fields are separated by spaces. Character set: IBM, code page 437


Meaning of the special characters:

- ! = Measuring with blank value (concentration) or reference absorbance (absorbance)
- t/T = Measurement with turbidity correction/with high turbidity
- * = Measured value outside the measuring range
- Q = AQA measurement

13.4 Data transmission


Baud rate	4800
Data bits:	8
Stop bits:	1
Parity:	none
Handshake:	Hardware
Max. cable length	15 m

13.5 Pin assignment

Photometer	Computer		Printer
9-pin socket	9-pin socket	25 pin plug	with RS 232 C interface
1	4	20	-
2	3	2	TXD
3	2	3	RXD
4	1 and 6	6	-
5	5	7	SG
6	4	20	-
7	8	5	-
8	7	4	DTR (if not available: short-circuit CTS and RTS)
9		-	-

14.1 Changing the lamp

- Switch off the photometer and disconnect it from the power line
- Carefully turn up the photometer and park it safely
- Screw off the lamp cover on the underside of the photometer

Let the lamp of the photometer cool down.

- Pull out the plug ①
- Unscrew the screw ②
 Remove the lamp with its holder ③ by pulling it gently upwards

Do not touch the new light bulb of the photometer.

 Insert a new preset lamp and screw it tight using the screw (2)

- Connect the plug ① of the new lamp
- Screw the lamp cover on again
- Set up the photometer again and connect it to the power line
- Press and hold
- Switch on the meter (open the cover) and after the
 - following display appears, release 🕣:

Reset]
new lame	
∉continue	J

14.2 Actions to take if a cell is broken

Do not rotate the photometer to pour out the liquid!

The photometer has a draining mechanism under the cell shaft that, when operated correctly, prevents any liquid coming into contact with electronic components.

- Switch off the photometer (close the cover) and disconnect it from the line power
- Let the liquid drain off
- Carefully remove any pieces of glass, e.g. using tweezers
- Carefully clean the cell shaft with a damp, lint-free cloth

Let the cell shaft dry

Press

After it is dry, check the photometer:

- Perform a photometer monitoring (see section 8.2).

Optical measuring principle	Filter photometer with reference beam absorption measurement; simultaneous recording of all wavelengths
Light source	Tungsten halogen lamp, preset
Receiver	6 x photo diode array
Optical filters	340 nm, 445 nm, 525 nm, 550 nm, 605 nm, 690 nm, Accuracy: ± 2 nm; Half width: 340 nm = 30 nm ± 2 nm; all others = 10 nm ± 2 nm
Photometric reproducibility	0.001 A at 1.000 A
Photometric resolution	0.001 A
Warm-up time	none
Measuring time	approx. 2 s
Types of measurement	Concentration (method depen- dent, selectable display form), absorbance, transmission
Measuring range absorbance	-0.300 A to 3.200 A
Measuring range transmission	0.1 % to 1000 %
Balancing	Permanently stored
Drift correction	Automatic on each Self-Check
Retrofitting of new methods	via the Internet
Bar code recog- nition	automatic selection of the method; automatic recognition of the reagents lot
Cell recognition	automatic
Self-Check	<i>Test:</i> Memory, optics, electronic measured value recording, barcode recognition, cell recogni- tion <i>Automatic calibration:</i> Optics, electronic measured value recording, barcode recognition
Time/Date	Real-time clock in the photom- eter
Dimensions	H: 140 mm, D: 270 mm, W: 260 mm

Weight	approx. 2.3 kg (battery version: 2.8 kg)
Meter safety	EN 61010, IEC 1010
Safety class	EN 61010-1/class 3
Power pack	
• Туре	Friwo FW6798/11.8363 * Friwo Part-No. 1810502 Input: 230 V~ ±10%/50 Hz/25 VA Output: 12 V~/1540 mA
	Friwo FW6798/11.8365 * Friwo Part-No. 1769227 Input: 120 V~ ±10%/60 Hz/24 VA Output: 12 V~/1540 mA
	* compulsory for meters with UL/ cUL test certificates
	FRIWO FW 7555O/15 Friwo Part. No. 1822367 Input: 100 240 V ~ / 50 60 Hz / 400 mA Output: 15 V DC / 1 A
• Meter safety	EN 60950
Battery opera- tion (optional)	Built-in battery: NiCad recharge- able battery 7.2 V/2200 mAh, operating time with new, fully charged battery: typical 40 hours with 10 measurements per hour, trickle charging in line operation, approx. 5 h charging time for a discharged battery, total discharge protection
Power consump- tion in line oper- ation	max. 1300 mA
EMC	EU directive 89/336/EEC EN 61326-1 EN 61000-3-2 A14 EN 61000-3-3 FCC class A
Climatic class	2, VDI/VDE 3540
Ambient temper- ature	Storage: –25 °C to +65 °C Operation: +5 °C to +40 °C
Allowable rela- tive humidity	Annual mean: 75 % 30 days/year: 95 % other days: 85 %
Test certificate	CE

Operating elements	On/off switch actuated by opening/closing the lid of the cell shaft cover
	Silicon keyboard with 4 function keys
	Cell shaft – for round cells (flat cell floor, external/internal diameter 16 mm / 13.8 mm) Recess for MemoChip
Diamlay	Crephical display 100 x C1 pixels
Display	Graphical display 128 x 64 pixels
Connections	Graphical display 128 x 64 pixels
	RS 232 C 9-pin socket to connect to PC or printer
Connections Digital inter- 	RS 232 C 9-pin socket to connect

FCC Class A Equipment Statement

<u>Note:</u> This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Software settings whe	n delivered
Measured value	1
number:	
blank value is:	Off
turbidity correct .:	Off
language:	English
Date of the last valid	invalid (not yet measured)
AQA1 check:	
AQA1 interval:	12 weeks
AQA2 interval:	4 weeks
AQA password:	0000
AQA mode:	Off
Lock measurement if	Off
AQA2 expired:	
Checks to be measured	none
with AQA1:	
AQA2 values:	none
Settings after reset - to	otal
Measured value storage	
Settings after reset - m	
Meas. value number:	1
Measured values:	none
Cotting often react	
Settings after reset - se Measured value	
number:	1
blank value:	Off
reference absorbance:	Off
	•
turbidity correct.:	Off
Language:	unchanged
Settings after reset - A	04
Date of the last valid	invalid (not yet measured)
AQA1 check:	
AQA1 interval:	12 weeks
AQA2 interval:	4 weeks
AQA password:	0000
AQA mode:	Off
Lock measurement if	
AQA2 expired:	Off
Checks to be measured	none
with AQA1:	(Input theoretical values and tolerances are not erased and are offered again
AQA2 values:	with the next input).
	(theoretical values and tolerances of all methods are set to default values
	according to the "Spectroquant [®] CombiCheck and standard solutions" table in the part "General information".)

The display remains blank when switched on	Connect the photometer to the line power via the power pack. In the case of battery operation: Battery empty, charging required (approx. 5h); line operation is possible without restrictions during charging time.
appears	Battery nearly empty. Charging required (see chapter 3 COMMISSIONING).
Date/time is lost when switched off	The backup battery of the real time clock is empty and has to be replaced. Send the photometer to the service department for this.
MemoChip is not recogni- zed	The MemoChip is not recognized by the photometer though it is in the recess during switching on. Operate the photometer with line power (see chapter 3 COMMISSIONING). Repeat the procedure.
Password forgotten	Inform the service department.
Photometer does not react	The connected printer is off line. Switch on the printer or pull out the interface cable.
Error messages:	
remove cell	The message remove cell appears on the display although no cell is inserted. Clean the cell shaft with a damp, lint-free cloth. If the error message still appears, return the photometer to the service depart- ment.
lamp defective	Replace the lamp (see chapter chapter 14 MAINTENANCE).
no zero adjustment	No zero adjustment is stored in the meter for the cell. Perform zero adjustment (see chapter chapter 11 ZERO ADJUSTMENT).
method invalid	No data is stored in the photometer for the selected method. Update method data (see chapter chapter 12 UPDATING METHOD DATA).
wrong method	During a difference measurement, the method was changed between the first and second measurement. During a difference measurement, the method must remain identical.
E_0	Hardware error: Send the photometer to the service department.
<i>E_1, E_2</i> or <i>E_3</i>	Replace the lamp (see chapter chapter 14 MAINTENANCE). If the error message remains, send the meter to the service department.

Wissenschaftlich-Technische Werkstätten GmbH

Dr.-Karl-Slevogt-Straße 1 D-82362 Weilheim

Germany

 Tel:
 +49 (0) 881 183-0

 +49 (0) 881 183-100

 Fax:
 +49 (0) 881 183-420

 E-Mail:
 Info@WTW.com

 Internet:
 http://www.WTW.com